Abstract:
In this paper, the Dirichlet problem for quasilinear elliptic equations is studied. New a priori estimates of the solution and its gradient are obtained. These estimates are derived without any assumptions on the smoothness of the coefficients and the right-hand side of the equation. Moreover, an arbitrary growth of the right-hand side with respect to the gradient of the solution is assumed. On the basis of the resulting estimates, existence theorems are proved.
Citation:
A. S. Tersenov, “Dirichlet Problem for a Class of Quasilinear Elliptic Equations”, Mat. Zametki, 76:4 (2004), 592–603; Math. Notes, 76:4 (2004), 546–557
\Bibitem{Ter04}
\by A.~S.~Tersenov
\paper Dirichlet Problem for a Class of Quasilinear Elliptic Equations
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 4
\pages 592--603
\mathnet{http://mi.mathnet.ru/mzm134}
\crossref{https://doi.org/10.4213/mzm134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2113035}
\zmath{https://zbmath.org/?q=an:1112.35072}
\elib{https://elibrary.ru/item.asp?id=13986611}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 4
\pages 546--557
\crossref{https://doi.org/10.1023/B:MATN.0000043484.27246.b3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224874900028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-5044243779}
Linking options:
https://www.mathnet.ru/eng/mzm134
https://doi.org/10.4213/mzm134
https://www.mathnet.ru/eng/mzm/v76/i4/p592
This publication is cited in the following 1 articles:
Tersenov, AS, “The problem of Dirichlet for anisotropic quasilinear degenerate elliptic equations”, Journal of Differential Equations, 235:2 (2007), 376