Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 4, Pages 578–591
DOI: https://doi.org/10.4213/mzm133
(Mi mzm133)
 

This article is cited in 5 scientific papers (total in 5 papers)

A Generalization of Men'shov's Theorem on Functions Satisfying Condition $K''$

D. S. Telyakovskii

Moscow Engineering Physics Institute (State University)
Full-text PDF (235 kB) Citations (5)
References:
Abstract: We consider functions $f(z)$, $z\!\in\! D\!\subset\!\mathbb C$, determining the mappings $w = f(z)$ that, at the points $\zeta$ of the domain $D$, have the same dilatation ratio along the three pairwise noncollinear rays issuing from $\zeta$. Under an additional condition on the disposition of rays, the Trokhimchuk generalization of Men'shov's theorem on the holomorphy of such functions can be extended to functions for which the assumption that they are continuous is replaced by the assumption that $(\log^+|f(z)|)^p$ is integrable with respect to the plane Lebesgue measure for each positive $p< 2$.
Received: 04.04.2002
Revised: 21.08.2003
English version:
Mathematical Notes, 2004, Volume 76, Issue 4, Pages 534–545
DOI: https://doi.org/10.1023/B:MATN.0000043483.90707.4d
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: D. S. Telyakovskii, “A Generalization of Men'shov's Theorem on Functions Satisfying Condition $K''$”, Mat. Zametki, 76:4 (2004), 578–591; Math. Notes, 76:4 (2004), 534–545
Citation in format AMSBIB
\Bibitem{Tel04}
\by D.~S.~Telyakovskii
\paper A Generalization of Men'shov's Theorem on Functions Satisfying Condition $K''$
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 4
\pages 578--591
\mathnet{http://mi.mathnet.ru/mzm133}
\crossref{https://doi.org/10.4213/mzm133}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2113034}
\zmath{https://zbmath.org/?q=an:1079.30001}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 4
\pages 534--545
\crossref{https://doi.org/10.1023/B:MATN.0000043483.90707.4d}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000224874900027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-5044228867}
Linking options:
  • https://www.mathnet.ru/eng/mzm133
  • https://doi.org/10.4213/mzm133
  • https://www.mathnet.ru/eng/mzm/v76/i4/p578
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024