Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 3, Pages 339–353
DOI: https://doi.org/10.4213/mzm13310
(Mi mzm13310)
 

This article is cited in 11 scientific papers (total in 11 papers)

On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros

S. A. Buterin

Saratov State University
References:
Abstract: We obtain the uniform stability of recovering entire functions of special form from their zeros. To such a form, we can reduce the characteristic determinants of strongly regular differential operators and pencils of the first and the second orders, including differential systems with asymptotically separated eigenvalues whose characteristic numbers lie on a line containing the origin, as well as the nonlocal perturbations of these operators. We prove that the dependence of such functions on the sequences of their zeros is Lipschitz continuous with respect to natural metrics on each ball of a finite radius. Results of this type can be used for studying the uniform stability of inverse spectral problems. In addition, general theorems on the asymptotics of zeros of functions of this class and on their equivalent representation via an infinite product are obtained, which give the corresponding results for many specific operators.
Keywords: sine-type function, strongly regular differential operator, eigenvalues, characteristic determinant, infinite product, uniform stability, Lipschitz stability.
Funding agency Grant number
Russian Foundation for Basic Research 20-31-70005
This work was supported by the Russian Foundation for Basic Research under grant 20-31-70005.
Received: 28.09.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 3, Pages 343–355
DOI: https://doi.org/10.1134/S0001434622030026
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: Russian
Citation: S. A. Buterin, “On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros”, Mat. Zametki, 111:3 (2022), 339–353; Math. Notes, 111:3 (2022), 343–355
Citation in format AMSBIB
\Bibitem{But22}
\by S.~A.~Buterin
\paper On the Uniform Stability of Recovering Sine-Type Functions with Asymptotically Separated Zeros
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 3
\pages 339--353
\mathnet{http://mi.mathnet.ru/mzm13310}
\crossref{https://doi.org/10.4213/mzm13310}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461265}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 3
\pages 343--355
\crossref{https://doi.org/10.1134/S0001434622030026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85123704215}
Linking options:
  • https://www.mathnet.ru/eng/mzm13310
  • https://doi.org/10.4213/mzm13310
  • https://www.mathnet.ru/eng/mzm/v111/i3/p339
  • This publication is cited in the following 11 articles:
    1. N. P. Bondarenko, “Ravnomernaya ustoichivost zadachi Khokhshtadta–Libermana”, Matem. zametki, 117:3 (2025), 333–343  mathnet  crossref
    2. Feng Wang, Chuan-Fu Yang, Sergey Buterin, Nebojs̆a Djurić, “Inverse spectral problems for Dirac-type operators with global delay on a star graph”, Anal.Math.Phys., 14:2 (2024)  crossref
    3. Feng Wang, Chuan-Fu Yang, “Inverse problems for Dirac operators with constant delay less than half of the interval”, Journal of Mathematical Physics, 65:3 (2024)  crossref  mathscinet
    4. B. Vojvodić, V. Vladičić, N. Djurić, “Inverse problem for Dirac operators with two constant delays”, Journal of Inverse and Ill-posed Problems, 2023  crossref
    5. M. Kuznetsova, “Uniform stability of recovering Sturm–Liouville-type operators with frozen argument”, Results Math., 78:5 (2023), 169  crossref  mathscinet
    6. N. P. Bondarenko, “Inverse problem for a differential operator on a star-shaped graph with nonlocal matching condition”, Bol. Soc. Mat. Mex., 29:1 (2023), 2  crossref
    7. S. Buterin, S. Vasilev, “An inverse Sturm–Liouville-type problem with constant delay and non-zero initial function”, Mathematics, 11:23 (2023), 4764  crossref
    8. S. Buterin, “Functional-differential operators on geometrical graphs with global delay and inverse spectral problems”, Results Math., 78:3 (2023), 79  crossref  mathscinet
    9. Nebojsa Djuric, Biljana Vojvodic, “Inverse problem for Dirac operators with a constant delay less than half the length of the interval”, Appl Anal Discrete Math, 17:1 (2023), 249  crossref
    10. Sergey Buterin, “On Recovering Sturm–Liouville-Type Operators with Global Delay on Graphs from Two Spectra”, Mathematics, 11:12 (2023), 2688  crossref
    11. S. Buterin, N. Djurić, “Inverse problems for Dirac operators with constant delay: uniqueness, characterization, uniform stability”, Lobachevskii J. Math., 43:6 (2022), 1492  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:428
    Full-text PDF :115
    References:90
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025