Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 3, Pages 323–338
DOI: https://doi.org/10.4213/mzm13148
(Mi mzm13148)
 

This article is cited in 4 scientific papers (total in 4 papers)

On the Semiring of Skew Polynomials over a Bezout Semiring

M. V. Babenkoa, V. V. Chermnykhb

a Vyatka State University
b Syktyvkar State University
Full-text PDF (482 kB) Citations (4)
References:
Abstract: In the paper, we study the semiring of skew polynomials over a Rickart Bezout semiring. Namely, let every left annihilator ideal of a semiring $S$ be an ideal. Then the semiring of skew polynomials $R=S[x,\varphi]$ is a semiring without nilpotent elements, and every its finitely generated left monic ideal is principal if and only if $S$ is a left Rickart left Bezout semiring, $\varphi$ is a rigid endomorphism, and $\varphi(d)$ is invertible for any nonzerodivisor $d$. We also obtain a characterization of the semiring $R$ in terms of Pierce stalks of the semiring $S$. The structure of left monic ideals of the semiring of skew polynomials over a left Rickart left Bezout semiring is clarified.
Keywords: semiring of skew polynomials, Bezout semiring, Rickart semiring, monic ideal, Pierce stalk of a semiring.
Received: 13.05.2021
Revised: 21.09.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 3, Pages 331–342
DOI: https://doi.org/10.1134/S0001434622030014
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: M. V. Babenko, V. V. Chermnykh, “On the Semiring of Skew Polynomials over a Bezout Semiring”, Mat. Zametki, 111:3 (2022), 323–338; Math. Notes, 111:3 (2022), 331–342
Citation in format AMSBIB
\Bibitem{BabChe22}
\by M.~V.~Babenko, V.~V.~Chermnykh
\paper On the Semiring of Skew Polynomials over a Bezout Semiring
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 3
\pages 323--338
\mathnet{http://mi.mathnet.ru/mzm13148}
\crossref{https://doi.org/10.4213/mzm13148}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4461264}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 3
\pages 331--342
\crossref{https://doi.org/10.1134/S0001434622030014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85129319438}
Linking options:
  • https://www.mathnet.ru/eng/mzm13148
  • https://doi.org/10.4213/mzm13148
  • https://www.mathnet.ru/eng/mzm/v111/i3/p323
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024