Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 1, Pages 8–14
DOI: https://doi.org/10.4213/mzm13229
(Mi mzm13229)
 

This article is cited in 3 scientific papers (total in 3 papers)

Strong Polynomial Completeness of Almost All Quasigroups

A. V. Galatenko, V. V. Galatenko, A. E. Pankratiev

Lomonosov Moscow State University
Full-text PDF (446 kB) Citations (3)
References:
Abstract: In the paper, it is proved that almost all quasigroups are strongly polynomially complete, i.e., are not isotopic to quasigroups that are not polynomially complete.
Keywords: quasigroup, isotopy, simplicity, affinity, polynomial completeness.
Funding agency Grant number
Defence Research and Development Organisation (DRDO) SAG/4600/TCID/Prog/QGSEC
This work was financially supported by DRDO (India), the project “Quasigroup Based Cryptography: Security Analysis and Development of Crypto-Primitives and Algorithms (QGSEC)”, grant no. SAG/4600/TCID/Prog/QGSEC.
Received: 19.07.2021
Revised: 21.08.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 1, Pages 7–12
DOI: https://doi.org/10.1134/S0001434622010023
Bibliographic databases:
Document Type: Article
UDC: 512.548.7+519.716.2
Language: Russian
Citation: A. V. Galatenko, V. V. Galatenko, A. E. Pankratiev, “Strong Polynomial Completeness of Almost All Quasigroups”, Mat. Zametki, 111:1 (2022), 8–14; Math. Notes, 111:1 (2022), 7–12
Citation in format AMSBIB
\Bibitem{GalGalPan22}
\by A.~V.~Galatenko, V.~V.~Galatenko, A.~E.~Pankratiev
\paper Strong Polynomial Completeness of Almost All Quasigroups
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 1
\pages 8--14
\mathnet{http://mi.mathnet.ru/mzm13229}
\crossref{https://doi.org/10.4213/mzm13229}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4360079}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 1
\pages 7--12
\crossref{https://doi.org/10.1134/S0001434622010023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760397500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85125461301}
Linking options:
  • https://www.mathnet.ru/eng/mzm13229
  • https://doi.org/10.4213/mzm13229
  • https://www.mathnet.ru/eng/mzm/v111/i1/p8
  • This publication is cited in the following 3 articles:
    1. A. V. Galatenko, V. V. Galatenko, A. E. Pankratiev, “Some properties of almost all n-quasigroups”, jour, 2:4 (2025), 35  crossref
    2. E. E. Gasanov, D. N. Babin, A. V. Galatenko, D. N. Zhuk, G. V. Kalachev, P. A. Panteleev, A. A. Chasovskikh, “MaTIS — shkola V. B. Kudryavtseva: traditsii i razvitie”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2024, no. 6, 15–26  mathnet  crossref  elib
    3. È. È. Gasanov, D. N. Babin, A. V. Galatenko, D. N. Zhuk, G. V. Kalachev, P. A. Panteleev, A. A. Chasovskikh, “MaTIS – the school of V.B. Kudryavtsev: traditions and advancement”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 79:6 (2024), 296–308  mathnet  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :68
    References:79
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025