Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2022, Volume 111, Issue 1, Pages 15–23
DOI: https://doi.org/10.4213/mzm13222
(Mi mzm13222)
 

This article is cited in 1 scientific paper (total in 1 paper)

Joint Universality of Certain Dirichlet Series

V. Garbaliauskienėa, D. Siauciunas

a Institute for Regional Development, Šiauliai Academy, Vilnius University
Full-text PDF (495 kB) Citations (1)
References:
Abstract: In this paper, we define the Dirichlet series $ \zeta_{u_T j} (s)$, $ j = 1, \dots, r$, absolutely converging in the half-plane $ \operatorname{Re} s> 1/2 $ and prove that the set of shifts $ (\zeta_{u_T 1} (s + ia_1 \tau), \dots, \zeta_{u_T r} (s + ia_r \tau)) $ approximating a given set of analytic functions has a positive density on the interval $ [T, T + H]$, $ H = o (T) $ as $ T \to \infty$. Here $ a_1, \dots, a_r \in \mathbb{R} $ are algebraic numbers linearly independent over $ \mathbb{Q} $ and $ u_T \to \infty $ as $ T \to \infty$.
Keywords: Riemann zeta function, Voronin's theorem, universality.
Received: 23.08.2021
English version:
Mathematical Notes, 2022, Volume 111, Issue 1, Pages 13–19
DOI: https://doi.org/10.1134/S0001434622010035
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. Garbaliauskienė, D. Siauciunas, “Joint Universality of Certain Dirichlet Series”, Mat. Zametki, 111:1 (2022), 15–23; Math. Notes, 111:1 (2022), 13–19
Citation in format AMSBIB
\Bibitem{GarSia22}
\by V.~Garbaliauskien{\.e}, D.~Siauciunas
\paper Joint Universality of Certain Dirichlet Series
\jour Mat. Zametki
\yr 2022
\vol 111
\issue 1
\pages 15--23
\mathnet{http://mi.mathnet.ru/mzm13222}
\crossref{https://doi.org/10.4213/mzm13222}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4360080}
\transl
\jour Math. Notes
\yr 2022
\vol 111
\issue 1
\pages 13--19
\crossref{https://doi.org/10.1134/S0001434622010035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000760397500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85125436861}
Linking options:
  • https://www.mathnet.ru/eng/mzm13222
  • https://doi.org/10.4213/mzm13222
  • https://www.mathnet.ru/eng/mzm/v111/i1/p15
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024