|
This article is cited in 13 scientific papers (total in 13 papers)
Extensions of Laguerre operators in indefinite inner product spaces
V. A. Derkach Donetsk National University
Abstract:
The Laguerre–Sonin polynomials $L_n^{(\alpha)}$ are orthogonal in linear spaces with indefinite inner product if $\alpha<-1$. We construct the completion $\Pi(\alpha)$ of this space and describe self-adjoint extensions of the Laguerre operator $l(y)=xy''+(1+\alpha-x)y'$, $\alpha<-1$, in the space $\Pi(\alpha)$. In particular, we write out the self-adjoint extension of the Laguerre operator whose eigenfunctions coincide with the Laguerre–Sonin polynomials and form an orthogonal basis in $\Pi(\alpha)$.
Received: 13.05.1996 Revised: 23.10.1997
Citation:
V. A. Derkach, “Extensions of Laguerre operators in indefinite inner product spaces”, Mat. Zametki, 63:4 (1998), 509–521; Math. Notes, 63:4 (1998), 449–459
Linking options:
https://www.mathnet.ru/eng/mzm1311https://doi.org/10.4213/mzm1311 https://www.mathnet.ru/eng/mzm/v63/i4/p509
|
Statistics & downloads: |
Abstract page: | 456 | Full-text PDF : | 234 | References: | 34 | First page: | 2 |
|