|
This article is cited in 1 scientific paper (total in 1 paper)
On the Existence and Stability of an Infinite-Dimensional Invariant Torus
S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb a P.G. Demidov Yaroslavl State University
b Lomonosov Moscow State University
Abstract:
We consider an annular set of the form $K=B\times \mathbb{T}^{\infty}$, where $B$ is a closed ball of the Banach space $E$, $\mathbb{T}^{\infty}$ is the infinite-dimensional torus (the direct product of a countable number of circles with the topology of coordinatewise uniform convergence). For a certain class of smooth maps $\Pi\colon K\to K$, we establish sufficient conditions for the existence and stability of an invariant toroidal manifold of the form $$ A=\{(v, \varphi)\in K: v=h(\varphi)\in E,\,\varphi\in\mathbb{T}^{\infty}\}, $$ where $h(\varphi)$ is a continuous function of the argument $\varphi\in\mathbb{T}^{\infty}$. We also study the question of the $C^m$-smoothness of this manifold for any natural $m$.
Keywords:
mapping, annulus principle, infinite-dimensional invariant torus, stability, smoothness.
Received: 20.09.2020
Citation:
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On the Existence and Stability of an Infinite-Dimensional Invariant Torus”, Mat. Zametki, 109:4 (2021), 508–528; Math. Notes, 109:4 (2021), 534–550
Linking options:
https://www.mathnet.ru/eng/mzm12912https://doi.org/10.4213/mzm12912 https://www.mathnet.ru/eng/mzm/v109/i4/p508
|
|