Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 4, Pages 508–528
DOI: https://doi.org/10.4213/mzm12912
(Mi mzm12912)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Existence and Stability of an Infinite-Dimensional Invariant Torus

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P.G. Demidov Yaroslavl State University
b Lomonosov Moscow State University
Full-text PDF (616 kB) Citations (1)
References:
Abstract: We consider an annular set of the form $K=B\times \mathbb{T}^{\infty}$, where $B$ is a closed ball of the Banach space $E$, $\mathbb{T}^{\infty}$ is the infinite-dimensional torus (the direct product of a countable number of circles with the topology of coordinatewise uniform convergence). For a certain class of smooth maps $\Pi\colon K\to K$, we establish sufficient conditions for the existence and stability of an invariant toroidal manifold of the form
$$ A=\{(v, \varphi)\in K: v=h(\varphi)\in E,\,\varphi\in\mathbb{T}^{\infty}\}, $$
where $h(\varphi)$ is a continuous function of the argument $\varphi\in\mathbb{T}^{\infty}$. We also study the question of the $C^m$-smoothness of this manifold for any natural $m$.
Keywords: mapping, annulus principle, infinite-dimensional invariant torus, stability, smoothness.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-10055
This work was supported by the Russian Foundation for Basic Research (project 18-29-10055).
Received: 20.09.2020
English version:
Mathematical Notes, 2021, Volume 109, Issue 4, Pages 534–550
DOI: https://doi.org/10.1134/S0001434621030226
Bibliographic databases:
Document Type: Article
UDC: 517.926
Language: Russian
Citation: S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “On the Existence and Stability of an Infinite-Dimensional Invariant Torus”, Mat. Zametki, 109:4 (2021), 508–528; Math. Notes, 109:4 (2021), 534–550
Citation in format AMSBIB
\Bibitem{GlyKolRoz21}
\by S.~D.~Glyzin, A.~Yu.~Kolesov, N.~Kh.~Rozov
\paper On the Existence and Stability of an Infinite-Dimensional Invariant Torus
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 4
\pages 508--528
\mathnet{http://mi.mathnet.ru/mzm12912}
\crossref{https://doi.org/10.4213/mzm12912}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 4
\pages 534--550
\crossref{https://doi.org/10.1134/S0001434621030226}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513100022}
Linking options:
  • https://www.mathnet.ru/eng/mzm12912
  • https://doi.org/10.4213/mzm12912
  • https://www.mathnet.ru/eng/mzm/v109/i4/p508
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024