Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 109, Issue 4, Pages 529–543
DOI: https://doi.org/10.4213/mzm12411
(Mi mzm12411)
 

This article is cited in 10 scientific papers (total in 10 papers)

Existence of $T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue

V. V. Yevstafyeva

Saint Petersburg State University
References:
Abstract: A system of $n$th-order ordinary differential equations with relay nonlinearity and periodic perturbation function on the right-hand side is studied. The matrix of the system has real nonzero eigenvalues, among which there is at least one positive and one multiple eigenvalue. A nonsingular transformation that reduces the matrix of the system to Jordan form is used. Continuous periodic solutions with two switching points in the phase space of the system are considered. It is assumed that the period of the perturbation function is a multiple of the periods of these solutions. Necessary conditions for the existence of such solutions are established. An existence theorem for a solution of period equal to the period of the perturbation function is proved. A numerical example confirming the obtained results is presented.
Keywords: system of ordinary differential equations, relay nonlinearity with hysteresis, periodic perturbation function, multiple eigenvalue, canonical transformation, Jordan matrix, periodic solution, switching points, switching points.
Received: 14.04.2019
Revised: 24.11.2020
English version:
Mathematical Notes, 2021, Volume 109, Issue 4, Pages 551–562
DOI: https://doi.org/10.1134/S0001434621030238
Bibliographic databases:
Document Type: Article
UDC: 517.925
PACS: N/A
Language: Russian
Citation: V. V. Yevstafyeva, “Existence of $T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue”, Mat. Zametki, 109:4 (2021), 529–543; Math. Notes, 109:4 (2021), 551–562
Citation in format AMSBIB
\Bibitem{Yev21}
\by V.~V.~Yevstafyeva
\paper Existence of~$T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue
\jour Mat. Zametki
\yr 2021
\vol 109
\issue 4
\pages 529--543
\mathnet{http://mi.mathnet.ru/mzm12411}
\crossref{https://doi.org/10.4213/mzm12411}
\elib{https://elibrary.ru/item.asp?id=46867493}
\transl
\jour Math. Notes
\yr 2021
\vol 109
\issue 4
\pages 551--562
\crossref{https://doi.org/10.1134/S0001434621030238}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670513100023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109162957}
Linking options:
  • https://www.mathnet.ru/eng/mzm12411
  • https://doi.org/10.4213/mzm12411
  • https://www.mathnet.ru/eng/mzm/v109/i4/p529
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :58
    References:30
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024