Abstract:
Smooth dynamical systems on closed manifolds with invariant measure are considered. The evolution of the density of a nonstationary invariant measure is described by the well-known Liouville equation. For ergodic dynamical systems, the Liouville equation is expressed in Hamiltonian form. An infinite collection of quadratic invariants that are pairwise in involution with respect to the Poisson bracket generated by the Hamiltonian structure is indicated.
This publication is cited in the following 2 articles:
V. V. Kozlov, “Quantization of linear systems of differential equations with a quadratic invariant in a Hilbert space”, Russian Math. Surveys, 76:2 (2021), 357–359
V. I. Bogachev, “On Sequential Properties of Spaces of Measures”, Math. Notes, 110:3 (2021), 449–453