Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 3, Pages 334–359
DOI: https://doi.org/10.4213/mzm12673
(Mi mzm12673)
 

This article is cited in 12 scientific papers (total in 12 papers)

Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp

S. Yu. Dobrokhotov, V. E. Nazaikinskii

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
References:
Abstract: We develop an approach to writing efficient short-wave asymptotics based on the representation of the Maslov canonical operator in a neighborhood of generic caustics in the form of special functions of a composite argument. A constructive method is proposed that allows expressing the canonical operator near a caustic cusp corresponding to the Lagrangian singularity of type $A_3$ (standard cusp) in terms of the Pearcey function and its first derivatives. It is shown that, conversely, the representation of a Pearcey type integral via the canonical operator turns out to be a very simple way to obtain its asymptotics for large real values of the arguments in terms of Airy functions and WKB-type functions.
Keywords: semiclassical asymptotics, canonical operator, caustic, cusp, Pearcey function, efficient formula.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00644
This work was supported by the Russian Foundation for Basic Research under grant 17-01-00644.
Received: 13.01.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 3, Pages 318–338
DOI: https://doi.org/10.1134/S0001434620090023
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp”, Mat. Zametki, 108:3 (2020), 334–359; Math. Notes, 108:3 (2020), 318–338
Citation in format AMSBIB
\Bibitem{DobNaz20}
\by S.~Yu.~Dobrokhotov, V.~E.~Nazaikinskii
\paper Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 3
\pages 334--359
\mathnet{http://mi.mathnet.ru/mzm12673}
\crossref{https://doi.org/10.4213/mzm12673}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153667}
\elib{https://elibrary.ru/item.asp?id=46682947}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 3
\pages 318--338
\crossref{https://doi.org/10.1134/S0001434620090023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000584617700002}
\elib{https://elibrary.ru/item.asp?id=45191905}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094167999}
Linking options:
  • https://www.mathnet.ru/eng/mzm12673
  • https://doi.org/10.4213/mzm12673
  • https://www.mathnet.ru/eng/mzm/v108/i3/p334
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :88
    References:47
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024