Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 1, Pages 3–16
DOI: https://doi.org/10.4213/mzm12514
(Mi mzm12514)
 

This article is cited in 5 scientific papers (total in 5 papers)

An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations

A. T. Assanovaa, Zh. S. Tokmurzinb

a Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan
b Aktobe State University after K. Zhubanov
Full-text PDF (531 kB) Citations (5)
References:
Abstract: The initial boundary-value problem for systems of fourth-order partial differential equations with two independent variables is considered. By using a new unknown eigenfunction, the problem under consideration is reduced to an equivalent nonlocal problem for a system of second-order hyperbolic-type integro-differential equations with integral conditions. An algorithm for finding an approximate solution of the resulting equivalent problem is proposed, and its convergence is proved. Conditions for the existence of a unique classical solution of the initial boundary-value problem for systems of fourth-order differential equations are established in terms of the coefficients of the system and the boundary matrices.
Keywords: system of fourth-order hyperbolic equations, initial boundary-value problem, hyperbolic-type integro-differential equation, nonlocal problem, solvability.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP05131220
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan under grant AP05131220.
Received: 19.07.2019
Revised: 14.01.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 1, Pages 3–14
DOI: https://doi.org/10.1134/S0001434620070019
Bibliographic databases:
Document Type: Article
UDC: 517.968.7
Language: Russian
Citation: A. T. Assanova, Zh. S. Tokmurzin, “An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations”, Mat. Zametki, 108:1 (2020), 3–16; Math. Notes, 108:1 (2020), 3–14
Citation in format AMSBIB
\Bibitem{AssTok20}
\by A.~T.~Assanova, Zh.~S.~Tokmurzin
\paper An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 1
\pages 3--16
\mathnet{http://mi.mathnet.ru/mzm12514}
\crossref{https://doi.org/10.4213/mzm12514}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2028153}
\elib{https://elibrary.ru/item.asp?id=45377538}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 1
\pages 3--14
\crossref{https://doi.org/10.1134/S0001434620070019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556090300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088953048}
Linking options:
  • https://www.mathnet.ru/eng/mzm12514
  • https://doi.org/10.4213/mzm12514
  • https://www.mathnet.ru/eng/mzm/v108/i1/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :57
    References:43
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024