Abstract:
The initial boundary-value problem for systems of fourth-order partial differential equations with two independent variables is considered. By using a new unknown eigenfunction, the problem under consideration is reduced to an equivalent nonlocal problem for a system of second-order hyperbolic-type integro-differential equations with integral conditions. An algorithm for finding an approximate solution of the resulting equivalent problem is proposed, and its convergence is proved. Conditions for the existence of a unique classical solution of the initial boundary-value problem for systems of fourth-order differential equations are established in terms of the coefficients of the system and the boundary matrices.
Keywords:
system of fourth-order hyperbolic equations, initial boundary-value problem, hyperbolic-type integro-differential equation, nonlocal problem, solvability.
Citation:
A. T. Assanova, Zh. S. Tokmurzin, “An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations”, Mat. Zametki, 108:1 (2020), 3–16; Math. Notes, 108:1 (2020), 3–14
\Bibitem{AssTok20}
\by A.~T.~Assanova, Zh.~S.~Tokmurzin
\paper An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 1
\pages 3--16
\mathnet{http://mi.mathnet.ru/mzm12514}
\crossref{https://doi.org/10.4213/mzm12514}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2028153}
\elib{https://elibrary.ru/item.asp?id=45377538}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 1
\pages 3--14
\crossref{https://doi.org/10.1134/S0001434620070019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556090300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088953048}
Linking options:
https://www.mathnet.ru/eng/mzm12514
https://doi.org/10.4213/mzm12514
https://www.mathnet.ru/eng/mzm/v108/i1/p3
This publication is cited in the following 6 articles:
Anar Assanova, Askarbek Imanchiyev, “A nonlocal problem with multipoint conditions for partial differential equations of higher order”, Filomat, 38:1 (2024), 295
D. A. Tursunov, K. G. Kozhobekov, A. O. Mamytov, B. E. Matieva, “Solvability of One Class of Inverse Problem for Partial Differential Equations”, Lobachevskii J Math, 45:7 (2024), 3453
D. A. Tursunov, K. G. Kozhobekov, A. O. Mamytov, E. A. Tursunov, “The Inverse Problem of Recovering the Kernel and the Right-Hand Side of a Fifth Order Integro-Differential Equation”, Lobachevskii J Math, 45:10 (2024), 5295
Yu. P. Apakov, S. M. Mamajanov, “Boundary value problem for a fourth-order equation of parabolic-hyperbolic type with multiple characteristics, whose slopes are greater than one”, Russian Math. (Iz. VUZ), 66:4 (2022), 1–11
G. A. Abdikalikova, A. T. Assanova, Sh. T. Shekerbekova, “A nonlocal problem for fourth-order loaded hyperbolic equations”, Russian Math. (Iz. VUZ), 66:8 (2022), 1–18
N. T. Orumbayeva, T. D. Tokmagambetova, “On One Solution of the Boundary Value Problem for a Pseudohyperbolic Equation of Fourth Order”, Lobachevskii J Math, 42:15 (2021), 3705