Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 108, Issue 1, Pages 17–32
DOI: https://doi.org/10.4213/mzm12791
(Mi mzm12791)
 

This article is cited in 3 scientific papers (total in 3 papers)

Lie Algebras of Heat Operators in a Nonholonomic Frame

V. M. Buchstaber, E. Yu. Bunkova

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (552 kB) Citations (3)
References:
Abstract: We construct the Lie algebras of systems of $2g$ graded heat operators $Q_0,Q_2,\dots,Q_{4g-2}$ that determine the sigma functions $\sigma(z,\lambda)$ of hyperelliptic curves of genera $g=1$, $2$, and $3$. As a corollary, we find that the system of three operators $Q_0$, $Q_2$, and $Q_4$ is already sufficient for determining the sigma functions. The operator $Q_0$ is the Euler operator, and each of the operators $Q_{2k}$, $k>0$, determines a $g$-dimensional Schrödinger equation with potential quadratic in $z$ for a nonholonomic frame of vector fields in the space $\mathbb C^{2g}$ with coordinates $\lambda$. For any solution $\varphi(z,\lambda)$ of the system of heat equations, we introduce the graded ring $\mathscr R_\varphi$ generated by the logarithmic derivatives of $\varphi(z,\lambda)$ of order $\ge 2$ and present the Lie algebra of derivations of $\mathscr R_\varphi$ explicitly. We show how this Lie algebra is related to our system of nonlinear equations. For $\varphi(z,\lambda)=\sigma(z,\lambda)$, this leads to a well-known result on how to construct the Lie algebra of differentiations of hyperelliptic functions of genus $g=1,2,3$.
Keywords: heat operator, grading, polynomial Lie algebra, differentiation of Abelian functions over parameters.
Received: 28.10.2019
Revised: 13.02.2020
English version:
Mathematical Notes, 2020, Volume 108, Issue 1, Pages 15–28
DOI: https://doi.org/10.1134/S0001434620070020
Bibliographic databases:
Document Type: Article
UDC: 517.986
Language: Russian
Citation: V. M. Buchstaber, E. Yu. Bunkova, “Lie Algebras of Heat Operators in a Nonholonomic Frame”, Mat. Zametki, 108:1 (2020), 17–32; Math. Notes, 108:1 (2020), 15–28
Citation in format AMSBIB
\Bibitem{BucBun20}
\by V.~M.~Buchstaber, E.~Yu.~Bunkova
\paper Lie Algebras of Heat Operators in a Nonholonomic Frame
\jour Mat. Zametki
\yr 2020
\vol 108
\issue 1
\pages 17--32
\mathnet{http://mi.mathnet.ru/mzm12791}
\crossref{https://doi.org/10.4213/mzm12791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133396}
\elib{https://elibrary.ru/item.asp?id=45388511}
\transl
\jour Math. Notes
\yr 2020
\vol 108
\issue 1
\pages 15--28
\crossref{https://doi.org/10.1134/S0001434620070020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000556090300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088999951}
Linking options:
  • https://www.mathnet.ru/eng/mzm12791
  • https://doi.org/10.4213/mzm12791
  • https://www.mathnet.ru/eng/mzm/v108/i1/p17
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:461
    Full-text PDF :80
    References:49
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024