Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 75, Issue 1, Pages 115–134
DOI: https://doi.org/10.4213/mzm12
(Mi mzm12)
 

$A$-Systems, Independent Functions, and Sets Bounded in Spaces of Measurable Functions

S. Ya. Novikov

Samara State University
References:
Abstract: Let $U\subset L_\circ\bigl([0,1],\mathscr M,\mathbf m\bigr)$ be a set of Lebesgue measurable functions. Suppose also that two seminormed spaces of real number sequences are given: $\mathscr A$ and $\mathscr B$. We study $(\mathscr A,\mathscr B)$ -sets $U$ defined by the classes $\mathscr A$ and $\mathscr B$ as follows:
$$ \begin{gathered} \forall a=(a_n)\in\mathscr {A},\quad \forall(f_n(t))\in u^{\mathbb{N}}\quad\text{(or for sequences similar to,} \\ \quad (f_n(t)) \quad\exists E=E(a)\subset[0,1],\quad \mathbf m E=1\quad\text{such that} \\ \{a_nf_n(t)\mathbf{1}_E(t)\}\in\mathscr B,\qquad t\in[0,1]. \end{gathered} $$
We consider three versions of the definition of $(\mathscr A,\mathscr B)$ -sets, one of which is based on functions independent in the probability sense. The case $\mathscr B=l_\infty$ is studied in detail. It is shown that $(\mathscr A,l_\infty)$ -independent sets are sets bounded or order bounded in some well-known function spaces ($L_p$, $L_{p,q}$, etc.) constructed with respect to the Lebesgue measure. A characterization of such sets in terms of seminormed spaces of number sequences is given. The $(l_1,c_\circ)$- and $(\mathscr A,l_1)$ -sets were studied by E. M. Nikishin.
Received: 01.04.2002
Revised: 28.05.2003
English version:
Mathematical Notes, 2004, Volume 75, Issue 1, Pages 107–123
DOI: https://doi.org/10.1023/B:MATN.0000015026.49971.53
Bibliographic databases:
UDC: 517.5+517.98+519.21
Language: Russian
Citation: S. Ya. Novikov, “$A$-Systems, Independent Functions, and Sets Bounded in Spaces of Measurable Functions”, Mat. Zametki, 75:1 (2004), 115–134; Math. Notes, 75:1 (2004), 107–123
Citation in format AMSBIB
\Bibitem{Nov04}
\by S.~Ya.~Novikov
\paper $A$-Systems, Independent Functions, and Sets Bounded in Spaces of Measurable Functions
\jour Mat. Zametki
\yr 2004
\vol 75
\issue 1
\pages 115--134
\mathnet{http://mi.mathnet.ru/mzm12}
\crossref{https://doi.org/10.4213/mzm12}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2053154}
\zmath{https://zbmath.org/?q=an:1117.46023}
\elib{https://elibrary.ru/item.asp?id=5976292}
\transl
\jour Math. Notes
\yr 2004
\vol 75
\issue 1
\pages 107--123
\crossref{https://doi.org/10.1023/B:MATN.0000015026.49971.53}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220006100011}
Linking options:
  • https://www.mathnet.ru/eng/mzm12
  • https://doi.org/10.4213/mzm12
  • https://www.mathnet.ru/eng/mzm/v75/i1/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :162
    References:85
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024