|
This article is cited in 2 scientific papers (total in 2 papers)
Convergence of the Newton–Kantorovich Method for Calculating Invariant Subspaces
Yu. M. Nechepurenkoa, M. Sadkaneb a Institute of Numerical Mathematics, Russian Academy of Sciences
b Université de Bretagne Occidentale
Abstract:
We propose a version of the Newton–Kantorovich method which, given a nondegenerate square $n\times n$ matrix and a number $m$, allows us to calculate the invariant subspace corresponding to its smallest (in modulus) eigenvalues. We obtain estimates of the rate of convergence via an integral criterion for circular dichotomy.
Received: 24.10.2002
Citation:
Yu. M. Nechepurenko, M. Sadkane, “Convergence of the Newton–Kantorovich Method for Calculating Invariant Subspaces”, Mat. Zametki, 75:1 (2004), 109–114; Math. Notes, 75:1 (2004), 101–106
Linking options:
https://www.mathnet.ru/eng/mzm11https://doi.org/10.4213/mzm11 https://www.mathnet.ru/eng/mzm/v75/i1/p109
|
Statistics & downloads: |
Abstract page: | 427 | Full-text PDF : | 207 | References: | 58 | First page: | 1 |
|