Abstract:
This note is devoted to the study of the smoothness of weak solutions to the Cauchy problem for three-dimensional magneto-hydrodynamic system in terms of the pressure. It is proved that if the pressure π belongs to L2(0,T,˙B−1∞,∞(R3)) or the gradient field of pressure ∇π belongs to L2/3(0,T,BMO(R3)), then the corresponding weak solution (u,b) remains smooth on [0,T].
Citation:
S. Gala, M. A. Ragusa, “A Note on Regularity Criteria in Terms of Pressure for the 3D Viscous MHD Equations”, Mat. Zametki, 102:4 (2017), 526–531; Math. Notes, 102:4 (2017), 475–479
\Bibitem{GalRag17}
\by S.~Gala, M.~A.~Ragusa
\paper A Note on Regularity Criteria in Terms of Pressure for the 3D Viscous MHD Equations
\jour Mat. Zametki
\yr 2017
\vol 102
\issue 4
\pages 526--531
\mathnet{http://mi.mathnet.ru/mzm11723}
\crossref{https://doi.org/10.4213/mzm11723}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3706869}
\elib{https://elibrary.ru/item.asp?id=30512288}
\transl
\jour Math. Notes
\yr 2017
\vol 102
\issue 4
\pages 475--479
\crossref{https://doi.org/10.1134/S000143461709019X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000413455100019}
\elib{https://elibrary.ru/item.asp?id=29493687}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85032006260}
Linking options:
https://www.mathnet.ru/eng/mzm11723
https://doi.org/10.4213/mzm11723
https://www.mathnet.ru/eng/mzm/v102/i4/p526
This publication is cited in the following 11 articles:
Sadek Gala, “A new regularity criterion for the 3D MHD equations in Triebel-Lizorkin spaces”, Journal of Mathematical Analysis and Applications, 531:2 (2024), 127842
Qiangheng Zhang, Qunli Zhang, “Forward dynamics of 3D double time-delayed MHD-Voight equations”, Applicable Analysis, 103:1 (2024), 88
P. Madhu Sravanthi, M. Radha Madhavi, W. Sridhar, 2ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENTIFIC DEVELOPMENT (ICAISD) 2021: Innovating Scientific Learning for Deep Communication, 2714, 2ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENTIFIC DEVELOPMENT (ICAISD) 2021: Innovating Scientific Learning for Deep Communication, 2023, 030010
Zdenek Skalak, “A new class of regularity criteria for the MHD and Navier–Stokes equations”, Nonlinear Analysis: Real World Applications, 73 (2023), 103916
Ahmad Alghamdi, Sadek Gala, Maria Alessandra Ragusa, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2021, 2849, INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2021, 2023, 260004
Hi Jun Choe, Jiří Neustupa, Minsuk Yang, “Improved regularity criteria for the MHD equations in terms of pressure using an Orlicz norm”, Applied Mathematics Letters, 132 (2022), 108121
T. Li, W. Wang, L. Liu, “A new regularity criterion for the three-dimensional incompressible magnetohydrodynamic equations in the Besov spaces”, J. Funct. space, 2021 (2021), 4227796
J. Neustupa, M. Yang, “On the role of pressure in the theory of MHD equations”, Nonlinear Anal.-Real World Appl., 60 (2021), 103283
I. B. Omrane, S. Gala, M. A. Ragusa, “A double-logarithmically improved regularity criterion of weak solutions for the 3D MHD equations”, Z. Angew. Math. Phys., 72:3 (2021), 114
J. Neustupa, M. Yang, “New regularity criteria for weak solutions to the MHD equations in terms of an associated pressure”, J. Math. Fluid Mech., 23:3 (2021), 73
S. Sarkar, M. F. Endalew, “Effects of melting process on the hydromagnetic wedge flow of a casson nanofluid in a porous medium”, Bound. Value Probl., 2019, 43