|
Finite-Dimensional Subspaces of $L_p$ with Lipschitz Metric Projection
P. A. Borodin, Yu. Yu. Druzhinin, K. V. Chesnokova Lomonosov Moscow State University
Abstract:
We prove that the metric projection onto a finite-dimensional subspace $Y\subset L_p$, $p\in(1,2)\cup(2,\infty)$, satisfies the Lipschitz condition if and only if every function in $Y$ is supported on finitely many atoms. We estimate the Lipschitz constant of such a projection for the case in which the subspace is one-dimensional.
Keywords:
metric projection, Lipschitz condition, $L_p$ space, linearity coefficient.
Received: 04.12.2016
Citation:
P. A. Borodin, Yu. Yu. Druzhinin, K. V. Chesnokova, “Finite-Dimensional Subspaces of $L_p$ with Lipschitz Metric Projection”, Mat. Zametki, 102:4 (2017), 514–525; Math. Notes, 102:4 (2017), 465–474
Linking options:
https://www.mathnet.ru/eng/mzm11479https://doi.org/10.4213/mzm11479 https://www.mathnet.ru/eng/mzm/v102/i4/p514
|
Statistics & downloads: |
Abstract page: | 399 | Full-text PDF : | 96 | References: | 45 | First page: | 16 |
|