Abstract:
Estimates of the chromatic numbers of spheres are studied. The optimality of the choice of the parameters of the linear-algebraic method used to obtain these estimates is investigated. For the case of $(0,1)$-vectors, it is shown that the parameters chosen in previous results yield the best estimate. For the case of $(-1,0,1)$-vectors, the optimal values of the parameters are obtained; this leads to a significant refinement of the estimates of the chromatic numbers of spheres obtained earlier.
Keywords:
chromatic number of spheres, linear-algebraic method, Frankl–Wilson theorem, Nelson–Hadwiger problem, distance graphs.
\Bibitem{Kos19}
\by O.~A.~Kostina
\paper On Lower Bounds for the Chromatic Number of Spheres
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 1
\pages 18--31
\mathnet{http://mi.mathnet.ru/mzm11633}
\crossref{https://doi.org/10.4213/mzm11633}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894446}
\elib{https://elibrary.ru/item.asp?id=36603820}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 1
\pages 16--27
\crossref{https://doi.org/10.1134/S0001434619010036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464727500003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064252545}
Linking options:
https://www.mathnet.ru/eng/mzm11633
https://doi.org/10.4213/mzm11633
https://www.mathnet.ru/eng/mzm/v105/i1/p18
This publication is cited in the following 14 articles:
Danila Cherkashin, Vsevolod Voronov, “On the Chromatic Number of 2-Dimensional Spheres”, Discrete Comput Geom, 71:2 (2024), 467
M.M. Ipatov, M.M. Koshelev, A.M. Raigorodskii, “Modularity of some distance graphs”, European Journal of Combinatorics, 117 (2024), 103833
V.A. Voronov, A.M. Neopryatnaya, E.A. Dergachev, “Constructing 5-chromatic unit distance graphs embedded in the Euclidean plane and two-dimensional spheres”, Discrete Mathematics, 345:12 (2022), 113106
Mikhail M. Koshelev, “Lower bounds on the clique-chromatic numbers of some distance graphs”, Moscow J. Comb. Number Th., 10:2 (2021), 141
Mikhail Koshelev, “New lower bound on the modularity of Johnson graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 77
Mikhail Ipatov, “Exact modularity of line graphs of complete graphs”, Moscow J. Comb. Number Th., 10:1 (2021), 61
Nikita Derevyanko, Mikhail Koshelev, Andrei Raigorodskii, Trends in Mathematics, 14, Extended Abstracts EuroComb 2021, 2021, 221
M. M. Ipatov, M. Koshelev, A. M. Raigorodskii, “Modularity of some distance graphs”, Dokl. Math., 101:1 (2020), 60–61
A. M. Raigorodskii, M. Koshelev, “New bounds for the clique-chromatic numbers of Johnson graphs”, Dokl. Math., 101:1 (2020), 66–67
A. M. Raigorodskii, M. M. Koshelev, “New bounds on clique-chromatic numbers of johnson graphs”, Discret Appl. Math., 283 (2020), 724–729
Yu. A. Demidovich, “Distance Graphs with Large Chromatic Number and without Cliques of Given Size in the Rational Space”, Math. Notes, 106:1 (2019), 38–51
A. A. Sagdeev, “On a Frankl–Wilson Theorem”, Problems Inform. Transmission, 55:4 (2019), 376–395
Raigorodskii A.M. Shishunov E.D., “On the Independence Numbers of Distance Graphs With Vertices in (-1,0,1)(N)”, Dokl. Math., 100:2 (2019), 476–477
A. A. Sokolov, A. M. Raigorodskii, “O ratsionalnykh analogakh problem Nelsona–Khadvigera i Borsuka”, Chebyshevskii sb., 19:3 (2018), 270–281