Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2019, Volume 105, Issue 1, Pages 32–41
DOI: https://doi.org/10.4213/mzm11693
(Mi mzm11693)
 

This article is cited in 4 scientific papers (total in 4 papers)

Exact Value of the Nonmonotone Complexity of Boolean Functions

V. V. Kochergina, A. V. Mikhailovichb

a Lomonosov Moscow State University
b National Research University Higher School of Economics, Moscow
Full-text PDF (476 kB) Citations (4)
References:
Abstract: We study the complexity of the realization of Boolean functions by circuits in infinite complete bases containing all monotone functions with zero weight (cost of use) and finitely many nonmonotone functions with unit weight. The complexity of the realization of Boolean functions in the case where the only nonmonotone element of the basis is negation was completely described by A. A. Markov: the minimum number of negations sufficient for the realization of an arbitrary Boolean function $f$ (the inversion complexity of the function $f$) is equal to $\lceil\log_{2}(d(f)+1)\rceil$, where $d(f)$ is the maximum (over all increasing chains of sets of values of the variables) number of changes of the function value from 1 to 0. In the present paper, this result is generalized to the case of the computation of Boolean functions over an arbitrary basis $B$ of prescribed form. It is shown that the minimum number of nonmonotone functions sufficient for computing an arbitrary Boolean function $f$ is equal to $\lceil\log_{2}(d(f)/D(B)+1)\rceil$, where $D(B)=\max d(\omega)$; the maximum is taken over all nonmonotone functions $\omega$ of the basis $B$.
Keywords: Boolean (logical) circuits, circuits of functional elements, circuit complexity, inversion complexity, nonmonotone complexity.
Received: 24.05.2017
English version:
Mathematical Notes, 2019, Volume 105, Issue 1, Pages 28–35
DOI: https://doi.org/10.1134/S0001434619010048
Bibliographic databases:
Document Type: Article
UDC: 519.714
Language: Russian
Citation: V. V. Kochergin, A. V. Mikhailovich, “Exact Value of the Nonmonotone Complexity of Boolean Functions”, Mat. Zametki, 105:1 (2019), 32–41; Math. Notes, 105:1 (2019), 28–35
Citation in format AMSBIB
\Bibitem{KocMik19}
\by V.~V.~Kochergin, A.~V.~Mikhailovich
\paper Exact Value of the Nonmonotone Complexity of Boolean Functions
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 1
\pages 32--41
\mathnet{http://mi.mathnet.ru/mzm11693}
\crossref{https://doi.org/10.4213/mzm11693}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894447}
\elib{https://elibrary.ru/item.asp?id=36603823}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 1
\pages 28--35
\crossref{https://doi.org/10.1134/S0001434619010048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464727500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064338634}
Linking options:
  • https://www.mathnet.ru/eng/mzm11693
  • https://doi.org/10.4213/mzm11693
  • https://www.mathnet.ru/eng/mzm/v105/i1/p32
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :63
    References:34
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024