Abstract:
The application of the collocation method to the boundary integral equation of the exterior Dirichlet boundary-value problem for the Helmholtz equation is justified. In addition, a new method for constructing cubature formulas for surface singular integrals is proposed.
Citation:
E. G. Khalilov, “Justification of the Collocation Method for a Class of Surface Integral Equations”, Mat. Zametki, 107:4 (2020), 604–622; Math. Notes, 107:4 (2020), 663–678
\Bibitem{Kha20}
\by E.~G.~Khalilov
\paper Justification of the Collocation Method for a Class of Surface Integral Equations
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 4
\pages 604--622
\mathnet{http://mi.mathnet.ru/mzm10729}
\crossref{https://doi.org/10.4213/mzm10729}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4081964}
\elib{https://elibrary.ru/item.asp?id=43277258}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 4
\pages 663--678
\crossref{https://doi.org/10.1134/S0001434620030335}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528213700033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083800368}
Linking options:
https://www.mathnet.ru/eng/mzm10729
https://doi.org/10.4213/mzm10729
https://www.mathnet.ru/eng/mzm/v107/i4/p604
This publication is cited in the following 10 articles:
Elnur H. Khalilov, Araz R. Aliev, Ali M. Musayev, “Investigation of the approximate solution of one class of curvilinear integral equations by the projection method”, Ukr. Mat. Zhurn., 76:10 (2024), 1543
E. H. Khalilov, “Quadrature formula for normal derivative of double layer potential”, Ufa Math. J., 15:4 (2023), 100–111
E. G. Khalilov, “Issledovanie priblizhennogo resheniya integralnogo
uravneniya vneshnei kraevoi zadachi Dirikhle
dlya uravneniya Gelmgoltsa v dvumernom prostranstve”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2023, no. 82, 39–54
E. H. Khalilov, “On an approximate solution of a class of systems of curvilinear integral equations”, Diff Equat, 58:4 (2022), 556
E. H. Khalilov, “Analysis of approximate solution for a class of systems of integral equations”, Comput. Math. Math. Phys., 62:5 (2022), 811–826
E. H. Khalilov, M. N. Bakhshaliyeva, “Study of approximate solution to integral equation associated with mixed boundary value problem for Laplace equation”, Ufa Math. J., 13:1 (2021), 85–97
E. G. Khalilov, “Issledovanie priblizhennogo resheniya nekotorykh klassov poverkhnostnykh integralnykh uravnenii pervogo roda”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2021, no. 74, 43–54
M. N. Bakhshaliyeva, E. H. Khalilov, “Justification of the collocation method for an integral equation of the exterior Dirichlet problem for the Laplace equation”, Comput. Math. Math. Phys., 61:6 (2021), 923–937
Bakhshaliyeva M.N., “On the Set Kp in Finite Groups”, Vestn. Tomsk. Gos. Univ.-Mat. Mek., 2020, no. 68, 5–22
M. N. Bakhshalyeva, “Kvadraturnaya formula dlya proizvodnoi logarifmicheskikh potentsialov”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2020, no. 68, 5–22