Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 2, Pages 285–293
DOI: https://doi.org/10.4213/mzm10483
(Mi mzm10483)
 

This article is cited in 2 scientific papers (total in 2 papers)

A Note on the Upper Bound for Disjoint Convex Partitions

Xinshang You, Xiang Lin Wei

Hebei University of Science and Technology
Full-text PDF (512 kB) Citations (2)
References:
Abstract: Let $n(k,l,m)$, $k\le l\le m$, be the smallest integer such that any finite planar point set which has at least $n(k,l,m)$ points in general position, contains an empty convex $k$-hole, an empty convex $l$-hole and an empty convex $m$-hole, in which the three holes are pairwise disjoint. In this article, we prove that $n(4,4,5)\le 16$.
Keywords: finite planar point set, convex partition, convex hull, general position, disjoint hole.
Received: 20.03.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 2, Pages 268–274
DOI: https://doi.org/10.1134/S0001434614070281
Bibliographic databases:
Document Type: Article
UDC: 514.174.5
Language: Russian
Citation: Xinshang You, Xiang Lin Wei, “A Note on the Upper Bound for Disjoint Convex Partitions”, Mat. Zametki, 96:2 (2014), 285–293; Math. Notes, 96:2 (2014), 268–274
Citation in format AMSBIB
\Bibitem{XinWei14}
\by Xinshang You, Xiang~Lin~Wei
\paper A Note on the Upper Bound for Disjoint Convex Partitions
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 2
\pages 285--293
\mathnet{http://mi.mathnet.ru/mzm10483}
\crossref{https://doi.org/10.4213/mzm10483}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344296}
\zmath{https://zbmath.org/?q=an:1316.52001}
\elib{https://elibrary.ru/item.asp?id=21826549}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 2
\pages 268--274
\crossref{https://doi.org/10.1134/S0001434614070281}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340938800028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906493785}
Linking options:
  • https://www.mathnet.ru/eng/mzm10483
  • https://doi.org/10.4213/mzm10483
  • https://www.mathnet.ru/eng/mzm/v96/i2/p285
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :150
    References:34
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024