Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 2, Pages 277–284
DOI: https://doi.org/10.4213/mzm10482
(Mi mzm10482)
 

Exact Constants in Jackson Inequalities for Periodic Differentiable Functions in the Space $L_\infty$

S. A. Pichugov

Dnepropetrovsk National University of Railway Transport
References:
Abstract: It is proved that, in the space ${L }_\infty[0,2\pi]$, the following equalities hold for all $k=0,1,2,\dots$, $n\in\mathbb N$, $r=1,3,5,\dots$, $\mu\ge r$:
$$ \sup_{\substack{f\in {L }_\infty^r\\ f\ne\operatorname{const}}} \frac{{E}_{n-1}(f)}{\omega(f^{(r)},\pi/(n(2k+1)))}= \sup_{\substack{f\in {L }_\infty^r\\ f\ne\operatorname{const}}} \frac{{E}_{n,\mu}(f)}{\omega(f^{(r)},\pi/(n(2k+1)))}= \frac{\|\psi_{r,2k+1}\|}{2n^r}\mspace{2mu}, $$
where ${E}_{n-1}(f)$ and ${E}_{n,\mu}(f)$ are the best approximations of $f$ by, respectively, trigonometric polynomials of degree $n-1$ and $2\pi$-periodic splines of minimal deficiency of order $\mu$ with $2n$ equidistant nodes, $\omega(f^{(r)},h)$ is the modulus of continuity of $f^{(r)}$, $\psi_{r,2k+1}$ is the $r$th periodic integral of the special function $\psi_{0,2k+1}$, which is odd and piecewise constant on the partition $j\pi/ (2k+1)$, $j\in\mathbb Z$. For $k=0$, this result was obtained earlier by Ligun.
Keywords: Jackson inequality, exact constant in the Jackson inequality, $2\pi$-periodic function, the space $L_\infty$, best approximation by trigonometric polynomials, best approximation by $2\pi$-periodic splines, Jackson constant, Favard constant.
Received: 30.09.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 2, Pages 261–267
DOI: https://doi.org/10.1134/S000143461407027X
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: S. A. Pichugov, “Exact Constants in Jackson Inequalities for Periodic Differentiable Functions in the Space $L_\infty$”, Mat. Zametki, 96:2 (2014), 277–284; Math. Notes, 96:2 (2014), 261–267
Citation in format AMSBIB
\Bibitem{Pic14}
\by S.~A.~Pichugov
\paper Exact Constants in Jackson Inequalities for Periodic Differentiable Functions in the Space~$L_\infty$
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 2
\pages 277--284
\mathnet{http://mi.mathnet.ru/mzm10482}
\crossref{https://doi.org/10.4213/mzm10482}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344295}
\zmath{https://zbmath.org/?q=an:1314.41008}
\elib{https://elibrary.ru/item.asp?id=21826548}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 2
\pages 261--267
\crossref{https://doi.org/10.1134/S000143461407027X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340938800027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906513313}
Linking options:
  • https://www.mathnet.ru/eng/mzm10482
  • https://doi.org/10.4213/mzm10482
  • https://www.mathnet.ru/eng/mzm/v96/i2/p277
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:370
    Full-text PDF :161
    References:37
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024