Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 1, Pages 63–79
DOI: https://doi.org/10.4213/mzm10411
(Mi mzm10411)
 

On the Density of Polynomials in Some Spaces $L^2(M)$

S. M. Zagorodnyuk

V. N. Karazin Kharkiv National University
References:
Abstract: The question of the density of polynomials in some spaces $L^2(M)$ is studied. The following two variants of the measure $M$ and the polynomials are considered: (1) an $N\times N$ matrix-valued nonnegative Borel measure on $\mathbb{R}$ and vector-valued polynomials $p(x)=(p_0(x),p_1(x),\dots,p_{N-1}(x))$, where the $p_j(x)$ are complex polynomials and $N\in \mathbb{N}$; (2) a scalar nonnegative Borel measure on the strip $\Pi=\{(x,\varphi): x\in \mathbb{R}, \, \varphi\in [-\pi,\pi)\}$, and power-trigonometric polynomials $p(x,\varphi)=\sum_{m=0}^\infty\sum_{n=-\infty}^\infty \alpha_{m,n}x^m e^{in\varphi}$, $\alpha_{m,n}\in \mathbb{C}$, where only finitely many $\alpha_{m,n}$ are nonzero. We show that the polynomials are dense in $L^2(M)$ if and only if $M$ is the canonical solution of the corresponding moment problem. It should be stressed that we do not impose any additional constraints on the measure, except the existence of moments. Using the known descriptions of the canonical solutions,, we obtain conditions on the density of polynomials in $L^2(M)$. Simultaneously, we establish a model for commuting self-adjoint and unitary operators with spectrum of finite multiplicity.
Keywords: matrix-valued nonnegative Borel measure, Hamburger moment problem, Devinatz moment problem, commuting self-adjoint and unitary operators, vector-valued polynomial, power-trigonometric polynomial, spectrum of finite multiplicity.
Received: 01.08.2012
English version:
Mathematical Notes, 2014, Volume 95, Issue 1, Pages 53–66
DOI: https://doi.org/10.1134/S0001434614010064
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: S. M. Zagorodnyuk, “On the Density of Polynomials in Some Spaces $L^2(M)$”, Mat. Zametki, 95:1 (2014), 63–79; Math. Notes, 95:1 (2014), 53–66
Citation in format AMSBIB
\Bibitem{Zag14}
\by S.~M.~Zagorodnyuk
\paper On the Density of Polynomials in Some Spaces~$L^2(M)$
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 1
\pages 63--79
\mathnet{http://mi.mathnet.ru/mzm10411}
\crossref{https://doi.org/10.4213/mzm10411}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3267192}
\elib{https://elibrary.ru/item.asp?id=21276960}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 1
\pages 53--66
\crossref{https://doi.org/10.1134/S0001434614010064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894713822}
Linking options:
  • https://www.mathnet.ru/eng/mzm10411
  • https://doi.org/10.4213/mzm10411
  • https://www.mathnet.ru/eng/mzm/v95/i1/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024