Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 1, Pages 50–62
DOI: https://doi.org/10.4213/mzm10408
(Mi mzm10408)
 

This article is cited in 1 scientific paper (total in 1 paper)

Morita Context, Partial Hopf Galois Extensions and Partial Entwining Structure

C. Z. Du, J. F. Lin

School of Mathematical Science, Huaibei Normal University
Full-text PDF (474 kB) Citations (1)
References:
Abstract: We first introduce the notion of a right generalized partial smash product and explore some properties of such partial smash product. Based on these notions and properties, then we construct a Morita context for partial coactions of a co-Frobenius Hopf algebra. Finally, we prove that any Hopf partial Galois extension induces a unique partial entwining map compatible with the right partial coaction.
Keywords: partial smash product, Morita context, partial entwining structure, partial Hopf Galois extension.
Received: 22.11.2011
Revised: 17.11.2012
English version:
Mathematical Notes, 2014, Volume 95, Issue 1, Pages 43–52
DOI: https://doi.org/10.1134/S0001434614010052
Bibliographic databases:
Document Type: Article
UDC: 512.623.3
Language: Russian
Citation: C. Z. Du, J. F. Lin, “Morita Context, Partial Hopf Galois Extensions and Partial Entwining Structure”, Mat. Zametki, 95:1 (2014), 50–62; Math. Notes, 95:1 (2014), 43–52
Citation in format AMSBIB
\Bibitem{DuLin14}
\by C.~Z.~Du, J.~F.~Lin
\paper Morita Context, Partial Hopf Galois Extensions and Partial Entwining Structure
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 1
\pages 50--62
\mathnet{http://mi.mathnet.ru/mzm10408}
\crossref{https://doi.org/10.4213/mzm10408}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3267191}
\elib{https://elibrary.ru/item.asp?id=21276959}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 1
\pages 43--52
\crossref{https://doi.org/10.1134/S0001434614010052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894869366}
Linking options:
  • https://www.mathnet.ru/eng/mzm10408
  • https://doi.org/10.4213/mzm10408
  • https://www.mathnet.ru/eng/mzm/v95/i1/p50
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :162
    References:45
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024