|
The Global Dimension of $\omega$-Smash Coproducts
L. Yu. Zhang, W. Pan Nanjing Agricultural University
Abstract:
We mainly study the global dimension of $\omega$-smash coproducts. We show that if $H$ is a Hopf algebra with a bijective antipode $S_H$, and $C{_\omega}\bowtie H$ denotes the $\omega$-smash coproduct, then $$ \mathrm{gl}.\mathrm{dim}(C_\omega\bowtie H)\leq \mathrm{gl}.\mathrm{dim}(C)+\mathrm{gl}.\mathrm{dim}(H), $$ where $\mathrm{gl}.\mathrm{dim}(H)$ denotes the global dimension of $H$ as a coalgebra.
Keywords:
spectral sequence, global dimension, $\omega$-smash coproduct.
Received: 28.01.2012
Citation:
L. Yu. Zhang, W. Pan, “The Global Dimension of $\omega$-Smash Coproducts”, Mat. Zametki, 94:4 (2013), 541–551; Math. Notes, 94:4 (2013), 499–507
Linking options:
https://www.mathnet.ru/eng/mzm10321https://doi.org/10.4213/mzm10321 https://www.mathnet.ru/eng/mzm/v94/i4/p541
|
Statistics & downloads: |
Abstract page: | 325 | Full-text PDF : | 143 | References: | 35 | First page: | 8 |
|