Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 4, Pages 521–540
DOI: https://doi.org/10.4213/mzm9209
(Mi mzm9209)
 

Obstructions to Embeddings of Bundles of Matrix Algebras in a Trivial Bundle

A. V. Ershov

Moscow Institute of Physics and Technology (State University)
References:
Abstract: We evaluate the cohomology obstructions to the existence of fiber-preserving unital embedding of a locally trivial bundle $A_k\to X$ whose fiber is a complex matrix algebra $M_k(\mathbb C)$ in a trivial bundle with fiber $M_{kl}(\mathbb C)$ under the assumption that $(k,l)=1$. It is proved that the first obstruction coincides with the obstruction to the reduction of the structure group $\mathrm{PGL}_k(\mathbb C)$ of the bundle $A_k$ to $\mathrm{SL}_k(\mathbb C)$, which coincides with the first Chern class $c_1(\xi_k)$ reduced modulo $k$ under the assumption that $A_k\cong\mathrm{End}(\xi_k)$ for some vector $\mathbb C^k$-bundle $\xi_k\to X$. If the first obstruction vanishes, then $A_k\cong\mathrm{End}(\widetilde\xi_k)$ for some vector bundle $\widetilde\xi_k\to X$ with structure group $\mathrm{SL}_k(\mathbb C)$, and the second obstruction is $c_2(\widetilde\xi_k)\operatorname{mod} k \in H^4(X,\mathbb Z/k\mathbb Z)$. Further, the higher obstructions are defined using a Postnikov tower, and each of the obstructions is defined on the kernel of the previous obstruction.
Keywords: fiber-preserving unital embedding, locally trivial bundle, cohomology obstruction, complex matrix algebra, structure group, Chern classes, Postnikov tower.
Received: 11.06.2011
Revised: 18.05.2012
English version:
Mathematical Notes, 2013, Volume 94, Issue 4, Pages 482–498
DOI: https://doi.org/10.1134/S0001434613090198
Bibliographic databases:
Document Type: Article
UDC: 515.14
Language: Russian
Citation: A. V. Ershov, “Obstructions to Embeddings of Bundles of Matrix Algebras in a Trivial Bundle”, Mat. Zametki, 94:4 (2013), 521–540; Math. Notes, 94:4 (2013), 482–498
Citation in format AMSBIB
\Bibitem{Ers13}
\by A.~V.~Ershov
\paper Obstructions to Embeddings of Bundles of Matrix Algebras in a Trivial Bundle
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 4
\pages 521--540
\mathnet{http://mi.mathnet.ru/mzm9209}
\crossref{https://doi.org/10.4213/mzm9209}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206112}
\zmath{https://zbmath.org/?q=an:06261063}
\elib{https://elibrary.ru/item.asp?id=20731798}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 4
\pages 482--498
\crossref{https://doi.org/10.1134/S0001434613090198}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326052400019}
\elib{https://elibrary.ru/item.asp?id=21885303}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886486189}
Linking options:
  • https://www.mathnet.ru/eng/mzm9209
  • https://doi.org/10.4213/mzm9209
  • https://www.mathnet.ru/eng/mzm/v94/i4/p521
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :216
    References:44
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024