Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 6, Pages 920–931
DOI: https://doi.org/10.4213/mzm9302
(Mi mzm9302)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic Estimates of Functions Based on the Behavior of Their Laplace Transforms near Singular Points

O. A. Petruschov

M. V. Lomonosov Moscow State University
Full-text PDF (486 kB) Citations (1)
References:
Abstract: This paper deals with the relationship between the behavior of a real function $\nu(t)$ as $t\to +\infty$ and the behavior of the Laplace transform $F[\nu](s)$ of the charge $d\nu(t)$,
$$ F[\nu](s)=\int_0^{\infty}e^{-st}\,d\nu(t), $$
near its singular point.
Keywords: Laplace transform, nonmonotone real function, oscillation of a function, Riemann zeta-function, Dirichlet integral, Tauberian theorem, charge, measure.
Received: 26.12.2011
Revised: 23.04.2012
English version:
Mathematical Notes, 2013, Volume 93, Issue 6, Pages 906–916
DOI: https://doi.org/10.1134/S0001434613050283
Bibliographic databases:
Document Type: Article
UDC: 511.35+517.442
Language: Russian
Citation: O. A. Petruschov, “Asymptotic Estimates of Functions Based on the Behavior of Their Laplace Transforms near Singular Points”, Mat. Zametki, 93:6 (2013), 920–931; Math. Notes, 93:6 (2013), 906–916
Citation in format AMSBIB
\Bibitem{Pet13}
\by O.~A.~Petruschov
\paper Asymptotic Estimates of Functions Based on the Behavior of Their Laplace Transforms near Singular Points
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 6
\pages 920--931
\mathnet{http://mi.mathnet.ru/mzm9302}
\crossref{https://doi.org/10.4213/mzm9302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206041}
\zmath{https://zbmath.org/?q=an:1273.44002}
\elib{https://elibrary.ru/item.asp?id=20731747}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 6
\pages 906--916
\crossref{https://doi.org/10.1134/S0001434613050283}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321274300028}
\elib{https://elibrary.ru/item.asp?id=20438835}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879749103}
Linking options:
  • https://www.mathnet.ru/eng/mzm9302
  • https://doi.org/10.4213/mzm9302
  • https://www.mathnet.ru/eng/mzm/v93/i6/p920
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:433
    Full-text PDF :186
    References:58
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024