Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 2, Pages 228–238
DOI: https://doi.org/10.4213/mzm10114
(Mi mzm10114)
 

This article is cited in 24 scientific papers (total in 24 papers)

On the Arithmetic Triangle Arising from the Solvability Conditions for the Neumann Problem

V. V. Karachik

South Ural State University, Chelyabinsk
References:
Abstract: We study the arithmetic triangle arising from the solvability conditions for the Neumann problem for the polyharmonic equation in the unit ball. Recurrence relations for the elements of this triangle are obtained.
Keywords: Neumann problem, polyharmonic equation, arithmetic triangle, Vandermond determinant.
Received: 04.07.2012
Revised: 12.08.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 2, Pages 217–227
DOI: https://doi.org/10.1134/S0001434614070232
Bibliographic databases:
Document Type: Article
UDC: 512.643.2+517.953
Language: Russian
Citation: V. V. Karachik, “On the Arithmetic Triangle Arising from the Solvability Conditions for the Neumann Problem”, Mat. Zametki, 96:2 (2014), 228–238; Math. Notes, 96:2 (2014), 217–227
Citation in format AMSBIB
\Bibitem{Kar14}
\by V.~V.~Karachik
\paper On the Arithmetic Triangle Arising from the Solvability Conditions for the Neumann Problem
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 2
\pages 228--238
\mathnet{http://mi.mathnet.ru/mzm10114}
\crossref{https://doi.org/10.4213/mzm10114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344292}
\zmath{https://zbmath.org/?q=an:06434980}
\elib{https://elibrary.ru/item.asp?id=21826544}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 2
\pages 217--227
\crossref{https://doi.org/10.1134/S0001434614070232}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340938800023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906499540}
Linking options:
  • https://www.mathnet.ru/eng/mzm10114
  • https://doi.org/10.4213/mzm10114
  • https://www.mathnet.ru/eng/mzm/v96/i2/p228
  • This publication is cited in the following 24 articles:
    1. V. V. Karachik, “Green's function of one problem for the 3-harmonic equation in a ball”, Complex Variables and Elliptic Equations, 2025, 1  crossref
    2. V. V. Karachik, “Green's Function of the Riquier–Neumann Problem for the Polyharmonic Equation in the Unit Ball”, Comput. Math. and Math. Phys., 64:5 (2024), 1015  crossref
    3. V. V Karachik, “GREEN'S FUNCTION FOR THE RIEMANN–NEUMANN PROBLEM FOR A POLYHARMONIC EQUATION IN THE UNIT SPHERE”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:5 (2024), 791  crossref
    4. V. Karachik, “Solvability of the Neumann Boundary Value Problem for the Polyharmonic Equation in a Ball”, Lobachevskii J Math, 45:8 (2024), 3559  crossref
    5. V. V. Karachik, “Reshenie zadachi Rike-Neimana dlya poligarmonicheskogo uravneniya v share”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 15:1 (2023), 26–33  mathnet  crossref
    6. Valery Karachik, “On Green's Function of the Dirichlet Problem for the Polyharmonic Equation in the Ball”, Axioms, 12:6 (2023), 543  crossref
    7. Valery Karachik, “Riquier–Neumann Problem for the Polyharmonic Equation in a Ball”, Mathematics, 11:4 (2023), 1000  crossref
    8. Valery Karachik, Batirkhan Turmetov, Hongfen Yuan, “Four Boundary Value Problems for a Nonlocal Biharmonic Equation in the Unit Ball”, Mathematics, 10:7 (2022), 1158  crossref
    9. V. V. Karachik, “Solution to the Dirichlet Problem for the Polyharmonic Equation in the Ball”, Sib. Adv. Math., 32:3 (2022), 197  crossref
    10. V. V. Karachik, “Reshenie zadachi Dirikhle dlya poligarmonicheskogo uravneniya v share”, Matem. tr., 24:2 (2021), 46–64  mathnet  crossref
    11. Karachik V., “Dirichlet and Neumann Boundary Value Problems For the Polyharmonic Equation in the Unit Ball”, Mathematics, 9:16 (2021), 1907  crossref  mathscinet  isi  scopus
    12. Batirkhan Turmetov, Valery Karachik, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 060002  crossref
    13. V. V. Karachik, “Sufficient conditions for solvability of one class of Neumann-type problems for the polyharmonic equation”, Comput. Math. Math. Phys., 61:8 (2021), 1276–1288  mathnet  mathnet  crossref  crossref  isi  scopus
    14. V. V. Karachik, “Usloviya razreshimosti zadachi Neimana $\mathcal{N}_2$ dlya poligarmonicheskogo uravneniya v share”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 12:2 (2020), 13–20  mathnet  crossref
    15. V. V. Karachik, “Class of Neumann-type problems for the polyharmonic equation in a ball”, Comput. Math. Math. Phys., 60:1 (2020), 144–162  mathnet  crossref  crossref  isi  elib
    16. V. V. Karachik, “Neumann Type Problems for the Polyharmonic Equation in Ball”, J Math Sci, 249:6 (2020), 974  crossref
    17. V. V. Karachik, B. Kh. Turmetov, “On a class of Neumann type problems for polyharmonic equation”, Proceedings of the 45Th International Conference on Application of Mathematics in Engineering and Economics (Amee'19), AIP Conf. Proc., 2172, ed. V. Pasheva, N. Popivanov, G. Venkov, Amer. Inst. Phys., 2019, 030002  crossref  isi  scopus
    18. Sh. Dubey, A. Kumar, M. M. Mishra, “Polyharmonic Neumann andmixed boundary value problems in the Heisenberg group $\Bbb H_n$”, Complex Var. Elliptic Equ., 62:9, SI (2017), 1506–1518  crossref  mathscinet  zmath  isi  scopus
    19. V. V. Karachik, “Integralnye tozhdestva na sfere dlya normalnykh proizvodnykh poligarmonicheskikh funktsii”, Sib. elektron. matem. izv., 14 (2017), 533–551  mathnet  crossref  mathscinet  zmath
    20. V. V. Karachik, “A Neumann-type problem for the biharmonic equation”, Siberian Adv. Math., 27:2 (2017), 103–118  mathnet  crossref  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:423
    Full-text PDF :188
    References:72
    First page:21
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025