Abstract:
We study the arithmetic triangle arising from the solvability conditions for the Neumann problem for the polyharmonic equation in the unit ball. Recurrence relations for the elements of this triangle are obtained.
Citation:
V. V. Karachik, “On the Arithmetic Triangle Arising from the Solvability Conditions for the Neumann Problem”, Mat. Zametki, 96:2 (2014), 228–238; Math. Notes, 96:2 (2014), 217–227
\Bibitem{Kar14}
\by V.~V.~Karachik
\paper On the Arithmetic Triangle Arising from the Solvability Conditions for the Neumann Problem
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 2
\pages 228--238
\mathnet{http://mi.mathnet.ru/mzm10114}
\crossref{https://doi.org/10.4213/mzm10114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344292}
\zmath{https://zbmath.org/?q=an:06434980}
\elib{https://elibrary.ru/item.asp?id=21826544}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 2
\pages 217--227
\crossref{https://doi.org/10.1134/S0001434614070232}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340938800023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906499540}
Linking options:
https://www.mathnet.ru/eng/mzm10114
https://doi.org/10.4213/mzm10114
https://www.mathnet.ru/eng/mzm/v96/i2/p228
This publication is cited in the following 24 articles:
V. V. Karachik, “Green's function of one problem for the 3-harmonic equation in a ball”, Complex Variables and Elliptic Equations, 2025, 1
V. V. Karachik, “Green's Function of the Riquier–Neumann Problem for the Polyharmonic Equation in the Unit Ball”, Comput. Math. and Math. Phys., 64:5 (2024), 1015
V. V Karachik, “GREEN'S FUNCTION FOR THE RIEMANN–NEUMANN PROBLEM FOR A POLYHARMONIC EQUATION IN THE UNIT SPHERE”, Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, 64:5 (2024), 791
V. Karachik, “Solvability of the Neumann Boundary Value Problem for the Polyharmonic Equation in a Ball”, Lobachevskii J Math, 45:8 (2024), 3559
V. V. Karachik, “Reshenie zadachi Rike-Neimana dlya poligarmonicheskogo uravneniya v share”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 15:1 (2023), 26–33
Valery Karachik, “On Green's Function of the Dirichlet Problem for the Polyharmonic Equation in the Ball”, Axioms, 12:6 (2023), 543
Valery Karachik, “Riquier–Neumann Problem for the Polyharmonic Equation in a Ball”, Mathematics, 11:4 (2023), 1000
Valery Karachik, Batirkhan Turmetov, Hongfen Yuan, “Four Boundary Value Problems for a Nonlocal Biharmonic Equation in the Unit Ball”, Mathematics, 10:7 (2022), 1158
V. V. Karachik, “Solution to the Dirichlet Problem for the Polyharmonic Equation in the Ball”, Sib. Adv. Math., 32:3 (2022), 197
V. V. Karachik, “Reshenie zadachi Dirikhle dlya poligarmonicheskogo uravneniya v share”, Matem. tr., 24:2 (2021), 46–64
Karachik V., “Dirichlet and Neumann Boundary Value Problems For the Polyharmonic Equation in the Unit Ball”, Mathematics, 9:16 (2021), 1907
Batirkhan Turmetov, Valery Karachik, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 060002
V. V. Karachik, “Sufficient conditions for solvability of one class of Neumann-type problems for the polyharmonic equation”, Comput. Math. Math. Phys., 61:8 (2021), 1276–1288
V. V. Karachik, “Usloviya razreshimosti zadachi Neimana $\mathcal{N}_2$ dlya poligarmonicheskogo uravneniya v share”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 12:2 (2020), 13–20
V. V. Karachik, “Class of Neumann-type problems for the polyharmonic equation in a ball”, Comput. Math. Math. Phys., 60:1 (2020), 144–162
V. V. Karachik, “Neumann Type Problems for the Polyharmonic Equation in Ball”, J Math Sci, 249:6 (2020), 974
V. V. Karachik, B. Kh. Turmetov, “On a class of Neumann type problems for polyharmonic equation”, Proceedings of the 45Th International Conference on Application of Mathematics in Engineering and Economics (Amee'19), AIP Conf. Proc., 2172, ed. V. Pasheva, N. Popivanov, G. Venkov, Amer. Inst. Phys., 2019, 030002
Sh. Dubey, A. Kumar, M. M. Mishra, “Polyharmonic Neumann andmixed boundary value problems in the Heisenberg group $\Bbb H_n$”, Complex Var. Elliptic Equ., 62:9, SI (2017), 1506–1518
V. V. Karachik, “Integralnye tozhdestva na sfere dlya normalnykh proizvodnykh poligarmonicheskikh funktsii”, Sib. elektron. matem. izv., 14 (2017), 533–551
V. V. Karachik, “A Neumann-type problem for the biharmonic equation”, Siberian Adv. Math., 27:2 (2017), 103–118