Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 2, Pages 217–227
DOI: https://doi.org/10.4213/mzm9382
(Mi mzm9382)
 

This article is cited in 19 scientific papers (total in 19 papers)

$(n+1)$-ary Derivations of Semisimple Filippov algebras

I. B. Kaygorodovab

a Universidade de São Paulo, Instituto de Matemática e Estatística, Brazil
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: The structure of generalized and $(n+1)$-ary derivations of simple and semisimple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero is described. An example of a semisimple ternary Maltsev algebra is given which is not a Filippov algebra and admits a nontrivial $4$-ary derivation.
Keywords: $n+1$-ary derivation, semisimple Filippov algebra, simple finite-dimensional Filippov algebra, ternary Maltsev algebra.
Received: 17.04.2012
Revised: 30.09.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 2, Pages 208–216
DOI: https://doi.org/10.1134/S0001434614070220
Bibliographic databases:
Document Type: Article
UDC: 512.554
Language: Russian
Citation: I. B. Kaygorodov, “$(n+1)$-ary Derivations of Semisimple Filippov algebras”, Mat. Zametki, 96:2 (2014), 217–227; Math. Notes, 96:2 (2014), 208–216
Citation in format AMSBIB
\Bibitem{Kay14}
\by I.~B.~Kaygorodov
\paper $(n+1)$-ary Derivations of Semisimple Filippov algebras
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 2
\pages 217--227
\mathnet{http://mi.mathnet.ru/mzm9382}
\crossref{https://doi.org/10.4213/mzm9382}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344291}
\zmath{https://zbmath.org/?q=an:1315.17002}
\elib{https://elibrary.ru/item.asp?id=21826543}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 2
\pages 208--216
\crossref{https://doi.org/10.1134/S0001434614070220}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340938800022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84892373608}
Linking options:
  • https://www.mathnet.ru/eng/mzm9382
  • https://doi.org/10.4213/mzm9382
  • https://www.mathnet.ru/eng/mzm/v96/i2/p217
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :179
    References:46
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024