Abstract:
We generalize the method of construction of permutations based on the Butterfly structure for the case of arbitrary arithmetic space with even dimension over the field of two elements. An approach to the construction of permutations by means of nonbalanced (2m,m)(2m,m)-functions with high nonlinearity is suggested.
Citation:
D. B. Fomin, “Construction of permutations on the space V2mV2m by means of (2m,m)(2m,m)-functions”, Mat. Vopr. Kriptogr., 11:3 (2020), 121–138
\Bibitem{Fom20}
\by D.~B.~Fomin
\paper Construction of permutations on the space $V_{2m}$ by means of $(2m,m)$-functions
\jour Mat. Vopr. Kriptogr.
\yr 2020
\vol 11
\issue 3
\pages 121--138
\mathnet{http://mi.mathnet.ru/mvk335}
\crossref{https://doi.org/10.4213/mvk335}
Linking options:
https://www.mathnet.ru/eng/mvk335
https://doi.org/10.4213/mvk335
https://www.mathnet.ru/eng/mvk/v11/i3/p121
This publication is cited in the following 5 articles:
D. B. Fomin, M. A. Kovrizhnykh, “On differential uniformity of permutations derived using a generalized construction”, Matem. vopr. kriptogr., 13:2 (2022), 37–52
M. A. Kovrizhnykh, D. B. Fomin, “Ob evristicheskom algoritme postroeniya podstanovok s zadannymi kriptograficheskimi kharakteristikami s ispolzovaniem obobschennoi konstruktsii”, PDM, 2022, no. 57, 5–21
D. B. Fomin, “O sposobe postroeniya differentsialno 2δ2δ-ravnomernykh podstanovok na F22m”, PDM. Prilozhenie, 2021, no. 14, 51–55
D. I. Trifonov, D. B. Fomin, “Ob invariantnykh podprostranstvakh v XSL-shifrakh”, PDM, 2021, no. 54, 58–76
D. B. Fomin, “Ob algebraicheskoi stepeni i differentsialnoi ravnomernosti podstanovok prostranstva V2m, postroennykh s ispolzovaniem (2m,m)-funktsii”, Matem. vopr. kriptogr., 11:4 (2020), 133–149