Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2020, Volume 11, Issue 3, Pages 21–29
DOI: https://doi.org/10.4213/mvk329
(Mi mvk329)
 

This article is cited in 1 scientific paper (total in 1 paper)

Estimates for the variational distance between two sets of independent random variables

A. M. Zubkov

Steklov Mathematical Institute of RAS, Moscow
Full-text PDF (381 kB) Citations (1)
References:
Abstract: We obtain explicit lower and upper estimates of the total variation distance between distributions of two sets $(X_1,\ldots,X_n)$ and $(Y_1,\ldots,Y_n)$ of independent random variables which may be nonidentically distributed inside each set. Estimates are formulated in terms of total variation distances $\rho_k$ between distributions of separate components $X_k$ and $Y_k$, $k=1,\ldots,n$. Results for the case of homogeneous samples was considered in this journal in 2018. On the qualitative level the estimates of the present paper correspond with the estimates obtained for the homogeneous cases earlier.
Key words: total variation distance, nonhomogeneous samples, probabilistic inequalities, two-side estimates.
Received 29.IV.2019
Bibliographic databases:
Document Type: Article
UDC: 519.213.21
Language: Russian
Citation: A. M. Zubkov, “Estimates for the variational distance between two sets of independent random variables”, Mat. Vopr. Kriptogr., 11:3 (2020), 21–29
Citation in format AMSBIB
\Bibitem{Zub20}
\by A.~M.~Zubkov
\paper Estimates for the variational distance between two sets of independent random variables
\jour Mat. Vopr. Kriptogr.
\yr 2020
\vol 11
\issue 3
\pages 21--29
\mathnet{http://mi.mathnet.ru/mvk329}
\crossref{https://doi.org/10.4213/mvk329}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4195393}
Linking options:
  • https://www.mathnet.ru/eng/mvk329
  • https://doi.org/10.4213/mvk329
  • https://www.mathnet.ru/eng/mvk/v11/i3/p21
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:264
    Full-text PDF :134
    References:32
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024