Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2020, Volume 11, Issue 3, Pages 5–19
DOI: https://doi.org/10.4213/mvk328
(Mi mvk328)
 

This article is cited in 2 scientific papers (total in 2 papers)

$k$-splitted and $k$-homogeneous Latin squares and their transversals

V. V. Borisenko

LLC «Sertification Research Center», Moscow
Full-text PDF (421 kB) Citations (2)
References:
Abstract: We consider the $k$-splitted Latin squares, i.e. Latin squares of order $kn$ with elements from $\left\{ {0, \ldots ,kn - 1} \right\}$ such that after reducing modulo $n$ we obtain $\left( {kn \times kn} \right)$-matrix consisting of $k^2$ Latin squares of order $n$. If these $k^2$ Latin squares of order $n$ are identical, the original Latin square of order $kn$ is called $k$-homogeneous. The precise number of all $k$-homogeneous and lower bound for the number of all $k$-splitted Latin squares are found. Some characteristics of transversals for $k$-splitted Latin squares are described.
Key words: Latin square, transversal, directed graph.
Received 15.V.2020
Document Type: Article
UDC: 519.143
Language: Russian
Citation: V. V. Borisenko, “$k$-splitted and $k$-homogeneous Latin squares and their transversals”, Mat. Vopr. Kriptogr., 11:3 (2020), 5–19
Citation in format AMSBIB
\Bibitem{Bor20}
\by V.~V.~Borisenko
\paper $k$-splitted and $k$-homogeneous Latin squares and their transversals
\jour Mat. Vopr. Kriptogr.
\yr 2020
\vol 11
\issue 3
\pages 5--19
\mathnet{http://mi.mathnet.ru/mvk328}
\crossref{https://doi.org/10.4213/mvk328}
Linking options:
  • https://www.mathnet.ru/eng/mvk328
  • https://doi.org/10.4213/mvk328
  • https://www.mathnet.ru/eng/mvk/v11/i3/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:197
    Full-text PDF :114
    References:26
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024