Abstract:
The influence of reducibility of linear mappings on the security of block ciphers is studied. It is shown that the replacement of only two key schedule constants of Khazad block cipher leads to the appearance of weak key classes. We study invariant subspaces of the Kuznyechik linear mapping and demonstrate that there are no weak key schedule constants similar to Khazad. But the choice of other linear mappings constructed similarly to the original Kuznyechik mapping and choice of other constants may results in the appearance of weak keys.
Citation:
D. A. Burov, B. A. Pogorelov, “The influence of linear mapping reducibility on the choice of round constants”, Mat. Vopr. Kriptogr., 8:2 (2017), 51–64
\Bibitem{BurPog17}
\by D.~A.~Burov, B.~A.~Pogorelov
\paper The influence of linear mapping reducibility on the choice of round constants
\jour Mat. Vopr. Kriptogr.
\yr 2017
\vol 8
\issue 2
\pages 51--64
\mathnet{http://mi.mathnet.ru/mvk223}
\crossref{https://doi.org/10.4213/mvk223}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3689432}
\elib{https://elibrary.ru/item.asp?id=29864948}
Linking options:
https://www.mathnet.ru/eng/mvk223
https://doi.org/10.4213/mvk223
https://www.mathnet.ru/eng/mvk/v8/i2/p51
This publication is cited in the following 7 articles:
R. R. Aulet, R. A. de la Cruz Jiménes, “Construction of MDS matrices combining the Feistel, Misty and Lai-Massey schemes”, Matem. vopr. kriptogr., 12:2 (2021), 57–74
O. C. Puente, R. A. de la Cruz Jiménez, “Construction of orthomorphic MDS matrices with primitive characteristic polynomial”, Matem. vopr. kriptogr., 12:4 (2021), 125–143
V. Grozov, A. Guirik, M. Budko, M. Budko, “Development of a pseudo-random sequence generation function based on the cryptographic algorithm “kuznechik””, 2020 12Th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (Icumt 2020), International Conference on Ultra Modern Telecommunications and Control Systems & Workshops, IEEE, 2020, 93–98
D. A. Burov, “Subgroups of direct products of groups invariant under the action of permutationson factors”, Discrete Math. Appl., 30:4 (2020), 243–255
O. Koi Puente, R. A. De La Krus Khimenes, “Nekotorye sposoby postroeniya MDS-matrits nad konechnym polem”, PDM, 2019, no. 46, 5–18
D. A. Burov, “On relationship between the parameters characterizing nonlinearity and nonhomomorphy of vector spaces transformation”, Discrete Math. Appl., 29:5 (2019), 287–294
D. A. Burov, B. A. Pogorelov, “The permutation group insight on the diffusion property of linear mappings”, Matem. vopr. kriptogr., 9:2 (2018), 47–58