Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2017, Volume 8, Issue 2, Pages 65–76
DOI: https://doi.org/10.4213/mvk224
(Mi mvk224)
 

This article is cited in 4 scientific papers (total in 4 papers)

Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings

M. A. Goltvanitsa

Certification Research Center, LLC, Moscow
Full-text PDF (189 kB) Citations (4)
References:
Abstract: Let $p$ be a prime number, $R = \mathrm{GR}(q^d, p^d)$, where $q = p^r$, be a Galois ring, $S = \mathrm{GR}(q^{nd}, p^d)$ be its extension. We prove a non-commutative generalization of the well-known Hamilton–Cayley theorem. Using this result we prove the existence of roots in some extension $\mathcal{K}$ of $\check{S}$ for characteristic polynomials of skew maximal period linear recurrent sequences over $S$. Also for these polynomials we investigate the structure of the set of their roots.
Key words: non-commutative Hamilton–Cayley theorem, skew LRS, maximal period, Galois ring.
Received 17.III.2016
Bibliographic databases:
Document Type: Article
UDC: 519.719.2
Language: English
Citation: M. A. Goltvanitsa, “Non-commutative Hamilton–Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings”, Mat. Vopr. Kriptogr., 8:2 (2017), 65–76
Citation in format AMSBIB
\Bibitem{Gol17}
\by M.~A.~Goltvanitsa
\paper Non-commutative Hamilton--Cayley theorem and roots of characteristic polynomials of skew maximal period linear recurrences over Galois rings
\jour Mat. Vopr. Kriptogr.
\yr 2017
\vol 8
\issue 2
\pages 65--76
\mathnet{http://mi.mathnet.ru/mvk224}
\crossref{https://doi.org/10.4213/mvk224}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3689433}
\elib{https://elibrary.ru/item.asp?id=29864949}
Linking options:
  • https://www.mathnet.ru/eng/mvk224
  • https://doi.org/10.4213/mvk224
  • https://www.mathnet.ru/eng/mvk/v8/i2/p65
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:432
    Full-text PDF :238
    References:52
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024