Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2014, Volume 17, Number 1, Pages 19–69 (Mi mt266)  

This article is cited in 1 scientific paper (total in 1 paper)

Nonsplit extensions of Abelian $p$-groups by $L_2(p^n)$ and general theorems on extensions of finite groups

V. P. Burichenko

Institute of Mathematics, National Academy of Sciences of the Republic of Belarus, Minsk, Belarus
Full-text PDF (471 kB) Citations (1)
References:
Abstract: Let a group $\widetilde G$ be a nonsplit extension of an elementary Abelian $p$-group $V$ by the group $G=L_2(p^n)$ such that the action of $G$ on $V$ is irreducible. In the present article, we classify (up to isomorphism) such groups $\widetilde G$ with $p^n\ne3^4$.
The main part of the article consists of proofs of numerous general assertions on representations, cohomologies, and extensions of finite groups. Further, we use these results in our study of extensions by $L_2(q)$.
Key words: finite simple groups, cohomologies, nonsplit extensions.
Received: 23.11.2012
English version:
Siberian Advances in Mathematics, 2015, Volume 25, Issue 2, Pages 77–109
DOI: https://doi.org/10.3103/S1055134415020017
Bibliographic databases:
Document Type: Article
UDC: 512.542
Language: Russian
Citation: V. P. Burichenko, “Nonsplit extensions of Abelian $p$-groups by $L_2(p^n)$ and general theorems on extensions of finite groups”, Mat. Tr., 17:1 (2014), 19–69; Siberian Adv. Math., 25:2 (2015), 77–109
Citation in format AMSBIB
\Bibitem{Bur14}
\by V.~P.~Burichenko
\paper Nonsplit extensions of Abelian $p$-groups by $L_2(p^n)$ and general theorems on extensions of finite groups
\jour Mat. Tr.
\yr 2014
\vol 17
\issue 1
\pages 19--69
\mathnet{http://mi.mathnet.ru/mt266}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236360}
\transl
\jour Siberian Adv. Math.
\yr 2015
\vol 25
\issue 2
\pages 77--109
\crossref{https://doi.org/10.3103/S1055134415020017}
Linking options:
  • https://www.mathnet.ru/eng/mt266
  • https://www.mathnet.ru/eng/mt/v17/i1/p19
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:302
    Full-text PDF :116
    References:75
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024