Loading [MathJax]/jax/output/SVG/config.js
Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2020, Volume 81, Issue 1, Pages 87–104 (Mi mmo635)  

Cohomology rings of a class of torus manifolds

S. Sarkar, D. Stanley

Department of Mathematics and Statistics, University of Regina, Regina, Canada
References:
Abstract: Torus manifolds are topological generalization of smooth projective toric manifolds. We compute the rational cohomology ring of a class of locally standard torus manifolds whose orbit space may have proper non-acyclic faces. References: 15 entries.
Key words and phrases: polytopes, torus action, torus manifold, (equivariant) connected sum, homology groups, cohomology ring.
Funding agency Grant number
Science and Engineering Research Board MTR/2018/000963/MS
The authors would like to thank anonymous referee for many helpful comments and SERB India for MATRICS grant; MTR/2018/000963/MS. They also thank Pacific Institute of Mathematical Sciences and University of Regina.
Received: 07.12.2018
Revised: 17.07.2019
English version:
Transactions of the Moscow Mathematical Society, 2020, Volume 81, Issue 1, Pages 71–86
DOI: https://doi.org/10.1090/mosc/303
Bibliographic databases:
Document Type: Article
UDC: 515.146.34
MSC: 55N99, 57R99, 52B05
Language: English
Citation: S. Sarkar, D. Stanley, “Cohomology rings of a class of torus manifolds”, Tr. Mosk. Mat. Obs., 81, no. 1, MCCME, M., 2020, 87–104; Trans. Moscow Math. Soc., 81:1 (2020), 71–86
Citation in format AMSBIB
\Bibitem{SarSta20}
\by S.~Sarkar, D.~Stanley
\paper Cohomology rings of a class of torus manifolds
\serial Tr. Mosk. Mat. Obs.
\yr 2020
\vol 81
\issue 1
\pages 87--104
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo635}
\elib{https://elibrary.ru/item.asp?id=45968779}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2020
\vol 81
\issue 1
\pages 71--86
\crossref{https://doi.org/10.1090/mosc/303}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85103219959}
Linking options:
  • https://www.mathnet.ru/eng/mmo635
  • https://www.mathnet.ru/eng/mmo/v81/i1/p87
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:151
    Full-text PDF :78
    References:32
    First page:6
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025