|
Trudy Moskovskogo Matematicheskogo Obshchestva, 2020, Volume 81, Issue 1, Pages 41–85
(Mi mmo634)
|
|
|
|
Relaxation autowaves in a bi-local neuron model
S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb a Demidov Yaroslavl' State University
b Lomonosov Moscow State University
Abstract:
A so-called bi-local neuron model is considered, which is a system of two identical nonlinear delay equations linked by means of linear diffusion terms. It is shown that for an appropriate choice of parameters there exist two stable relaxation cycles in this system, which transform one into the other after interchanging the coordinate variables.
Received: 24.04.2019
Citation:
S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaxation autowaves in a bi-local neuron model”, Tr. Mosk. Mat. Obs., 81, no. 1, MCCME, M., 2020, 41–85; Trans. Moscow Math. Soc., 81:1 (2020), 33–70
Linking options:
https://www.mathnet.ru/eng/mmo634 https://www.mathnet.ru/eng/mmo/v81/i1/p41
|
Statistics & downloads: |
Abstract page: | 127 | Full-text PDF : | 43 | References: | 18 |
|