Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2017, Volume 78, Issue 1, Pages 155–194 (Mi mmo596)  

This article is cited in 1 scientific paper (total in 1 paper)

Orbit duality in ind-varieties of maximal generalized flags

Ivan Penkova, Lucas Fresseb

a Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
b Université de Lorraine, CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandoeuvre-lés-Nancy, F-54506 France
Full-text PDF (503 kB) Citations (1)
References:
Abstract: We extend Matsuki duality to arbitrary ind-varieties of maximal generalized flags, in other words, to any homogeneous ind-variety $ \mathbf {G}/\mathbf {B}$ for a classical ind-group $ \mathbf {G}$ and a splitting Borel ind-subgroup $ \mathbf {B}\subset \mathbf {G}$. As a first step, we present an explicit combinatorial version of Matsuki duality in the finite-dimensional case, involving an explicit parametrization of $ K$- and $ G^0$-orbits on $ G/B$. After proving Matsuki duality in the infinite-dimensional case, we give necessary and sufficient conditions on a Borel ind-subgroup $ \mathbf {B}\subset \mathbf {G}$ for the existence of open and closed $ \mathbf {K}$- and $ \mathbf {G}^0$-orbits on $ \mathbf {G}/\mathbf {B}$, where $ \left (\mathbf {K},\mathbf {G}^0\right )$ is an aligned pair of a symmetric ind-subgroup $ \mathbf {K}$ and a real form $ \mathbf {G}^0$ of $ \mathbf {G}$.
Key words and phrases: Classical ind-groups, generalized flags, symmetric pairs, rest forms, Matsuki duality.
Funding agency Grant number
Deutsche Forschungsgemeinschaft PE 980/6-1
Israel Science Foundation 797/14
Agence Nationale de la Recherche ANR-15–CE40-0012
The first author was supported in part by ISF Grant Nr. 797/14 and by ANR project GeoLie (ANR-15-CE40-0012). The second author was supported in part by DFG Grant PE 980/6-1.
Received: 03.04.2017
Revised: 27.04.2017
English version:
Transactions of the Moscow Mathematical Society, 2017, Volume 78, Pages 131–160
DOI: https://doi.org/10.1090/mosc/266
Bibliographic databases:
Document Type: Article
UDC: 512.816.2, 512.816.4, 512.818
Language: Russian
Citation: Ivan Penkov, Lucas Fresse, “Orbit duality in ind-varieties of maximal generalized flags”, Tr. Mosk. Mat. Obs., 78, no. 1, MCCME, M., 2017, 155–194; Trans. Moscow Math. Soc., 78 (2017), 131–160
Citation in format AMSBIB
\Bibitem{PenFre17}
\by Ivan~Penkov, Lucas~Fresse
\paper Orbit duality in ind-varieties of maximal generalized flags
\serial Tr. Mosk. Mat. Obs.
\yr 2017
\vol 78
\issue 1
\pages 155--194
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo596}
\elib{https://elibrary.ru/item.asp?id=37045059}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2017
\vol 78
\pages 131--160
\crossref{https://doi.org/10.1090/mosc/266}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037610738}
Linking options:
  • https://www.mathnet.ru/eng/mmo596
  • https://www.mathnet.ru/eng/mmo/v78/i1/p155
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:324
    Full-text PDF :51
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024