|
Trudy Moskovskogo Matematicheskogo Obshchestva, 2017, Volume 78, Issue 1, Pages 155–194
(Mi mmo596)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Orbit duality in ind-varieties of maximal generalized flags
Ivan Penkova, Lucas Fresseb a Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
b Université de Lorraine, CNRS, Institut Élie Cartan de Lorraine, UMR 7502, Vandoeuvre-lés-Nancy, F-54506 France
Abstract:
We extend Matsuki duality to arbitrary ind-varieties of maximal generalized flags, in other words, to any homogeneous ind-variety $ \mathbf {G}/\mathbf {B}$ for a classical ind-group $ \mathbf {G}$ and a splitting Borel ind-subgroup $ \mathbf {B}\subset \mathbf {G}$. As a first step, we present an explicit combinatorial version of Matsuki duality in the finite-dimensional case, involving an explicit parametrization of $ K$- and $ G^0$-orbits on $ G/B$. After proving Matsuki duality in the infinite-dimensional case, we give necessary and sufficient conditions on a Borel ind-subgroup $ \mathbf {B}\subset \mathbf {G}$ for the existence of open and closed $ \mathbf {K}$- and $ \mathbf {G}^0$-orbits on $ \mathbf {G}/\mathbf {B}$, where $ \left (\mathbf {K},\mathbf {G}^0\right )$ is an aligned pair of a symmetric ind-subgroup $ \mathbf {K}$ and a real form $ \mathbf {G}^0$ of $ \mathbf {G}$.
Key words and phrases:
Classical ind-groups, generalized flags, symmetric pairs, rest forms, Matsuki duality.
Received: 03.04.2017 Revised: 27.04.2017
Citation:
Ivan Penkov, Lucas Fresse, “Orbit duality in ind-varieties of maximal generalized flags”, Tr. Mosk. Mat. Obs., 78, no. 1, MCCME, M., 2017, 155–194; Trans. Moscow Math. Soc., 78 (2017), 131–160
Linking options:
https://www.mathnet.ru/eng/mmo596 https://www.mathnet.ru/eng/mmo/v78/i1/p155
|
Statistics & downloads: |
Abstract page: | 324 | Full-text PDF : | 51 | References: | 32 |
|