Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2017, Volume 78, Issue 1, Pages 145–154 (Mi mmo595)  

This article is cited in 1 scientific paper (total in 1 paper)

An estimate for the average number of common zeros of Laplacian eigenfunctions

Dmitri Akhiezer, Boris Kazarnovskii

Institute for Information Transmission Problems 19 B. Karetny per., 127994, Moscow, Russia
Full-text PDF (261 kB) Citations (1)
References:
Abstract: On a compact Riemannian manifold $ M$ of dimension $ n$, we consider $ n$ eigenfunctions of the Laplace operator $ \Delta $ with eigenvalue $ \lambda $. If $ M$ is homogeneous under a compact Lie group preserving the metric then we prove that the average number of common zeros of $ n$ eigenfunctions does not exceed $ c(n)\lambda ^{n/2}{\rm vol}\,M$, the expression known from the celebrated Weyl's law. Moreover, if the isotropy representation is irreducible, then the estimate turns into the equality. The constant $ c(n)$ is explicitly given. The method of proof is based on the application of Crofton's formula for the sphere.
Key words and phrases: Homogeneous Riemannian manifold, Laplace operator, Crofton formula.
Funding agency Grant number
Russian Science Foundation 14–50–00150
The research was carried out at the Institute for Information Transmission Problems under support by the Russian Foundation of Sciences, grant No. 14-50-00150.
Received: 14.02.2017
Revised: 26.04.2017
English version:
Transactions of the Moscow Mathematical Society, 2017, Volume 78, Pages 123–130
DOI: https://doi.org/10.1090/mosc/269
Bibliographic databases:
Document Type: Article
UDC: 514.765, 517.956.2
MSC: 53C30, 58J05
Language: Russian
Citation: Dmitri Akhiezer, Boris Kazarnovskii, “An estimate for the average number of common zeros of Laplacian eigenfunctions”, Tr. Mosk. Mat. Obs., 78, no. 1, MCCME, M., 2017, 145–154; Trans. Moscow Math. Soc., 78 (2017), 123–130
Citation in format AMSBIB
\Bibitem{AkhKaz17}
\by Dmitri~Akhiezer, Boris~Kazarnovskii
\paper An estimate for the average number of common zeros of Laplacian eigenfunctions
\serial Tr. Mosk. Mat. Obs.
\yr 2017
\vol 78
\issue 1
\pages 145--154
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo595}
\elib{https://elibrary.ru/item.asp?id=37045058}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2017
\vol 78
\pages 123--130
\crossref{https://doi.org/10.1090/mosc/269}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037636587}
Linking options:
  • https://www.mathnet.ru/eng/mmo595
  • https://www.mathnet.ru/eng/mmo/v78/i1/p145
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :69
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024