|
Trudy Moskovskogo Matematicheskogo Obshchestva, 2017, Volume 78, Issue 1, Pages 89–100
(Mi mmo590)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac–Moody algebras
Valery Gritsenkoab, Viacheslav V. Nikulincd a Laboratoire Paul Painlevé et IUF, Université de Lille 1, France
b National Research University “Higher School of Economics”, Russian Federation
c Steklov Mathematical Institute, ul. Gubkina 8, GSP-1, Russia
d Department of Pure Mathematics, The University of Liverpool, Liverpool L69 3BX, United Kingdom
Abstract:
Using our results about Lorentzian Kac–Moody algebras and arithmetic mirror symmetry, we give six series of examples of lattice-polarized $K3$ surfaces with automorphic discriminant.
Key words and phrases:
$K3$ surface, Picard lattice, polarization, moduli space, degeneration, discriminant,
Lie algebra, Kac–Moody algebra, root system, automorphic form.
Received: 14.03.2017 Revised: 13.04.2017
Citation:
Valery Gritsenko, Viacheslav V. Nikulin, “Examples of lattice-polarized $K3$ surfaces with automorphic discriminant, and Lorentzian Kac–Moody algebras”, Tr. Mosk. Mat. Obs., 78, no. 1, MCCME, M., 2017, 89–100; Trans. Moscow Math. Soc., 78 (2017), 75–83
Linking options:
https://www.mathnet.ru/eng/mmo590 https://www.mathnet.ru/eng/mmo/v78/i1/p89
|
|