Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2017, Volume 78, Issue 1, Pages 17–88 (Mi mmo593)  

This article is cited in 3 scientific papers (total in 3 papers)

Representations of superconformal algebras and mock theta functions

V. G. Kaca, M. Wakimotob

a Department of Mathematics, M.I.T, Cambridge, MA 02139, USA
b 12–4 Karato-Rokkoudai, Kita-ku, Kobe 651–1334, Japan
Full-text PDF (571 kB) Citations (3)
References:
Abstract: It is well known that the normalized characters of integrable highest weight modules of given level over an affine Lie algebra $\hat{\mathfrak{g}}$ span an $\mathrm{SL}_2(\mathbb{Z})$–invariant space. This result extends to admissible $\hat{\mathfrak{g}}$–modules, where $\mathfrak{g}$ is a simple Lie algebra or $\mathrm{osp}_{1|n}$. Applying the quantum Hamiltonian reduction (QHR) to admissible $\hat{\mathfrak{g}}$–modules when $\mathfrak{g} =s\ell_2$ (resp. $=\mathrm{osp}_{1|2}$) one obtains minimal series modules over the Virasoro (resp. $N=1$ superconformal algebras), which form modular invariant families.
Another instance of modular invariance occurs for boundary level admissible modules, including when $\mathfrak{g}$ is a basic Lie superalgebra. For example, if $\mathfrak{g}=s\ell_{2|1}$ (resp. $=\mathrm{osp}_{3|2}$), we thus obtain modular invariant families of $\hat{\mathfrak{g}}$–modules, whose QHR produces the minimal series modules for the $N=2$ superconformal algebras (resp. a modular invariant family of $N=3$ superconformal algebra modules).
However, in the case when $\mathfrak{g}$ is a basic Lie superalgebra different from a simple Lie algebra or $\mathrm{osp}_{1|n}$, modular invariance of normalized supercharacters of admissible $\hat{\mathfrak{g}}$–modules holds outside of boundary levels only after their modification in the spirit of Zwegers' modification of mock theta functions. Applying the QHR, we obtain families of representations of $N=2,3,4$ and big $N=4$ superconformal algebras, whose modified (super)characters span an $\mathrm{SL}_2(\mathbb{Z})$–invariant space.
Key words and phrases: basic Lie superalgebra, affine Lie superalgebra, superconformal algebra, integrable and admissible representations of affine Lie superalgebras, quantum Hamiltonian reduction, theta function, mock theta function and its modification, modular invariant family of characters.
Funding agency Grant number
National Science Foundation
The first named author supported in part by an NSF grant. The second named author supported in part by Department of Mathematics, M.I.T
Received: 12.01.2017
Revised: 01.04.2017
English version:
Transactions of the Moscow Mathematical Society, 2017, Volume 78, Pages 9–74
DOI: https://doi.org/10.1090/mosc/268
Bibliographic databases:
Document Type: Article
UDC: 512.554.32, 512.554.38, 517.986.5, 515.178.1, 517.547.582
Language: English
Citation: V. G. Kac, M. Wakimoto, “Representations of superconformal algebras and mock theta functions”, Tr. Mosk. Mat. Obs., 78, no. 1, MCCME, M., 2017, 17–88; Trans. Moscow Math. Soc., 78 (2017), 9–74
Citation in format AMSBIB
\Bibitem{KacWak17}
\by V.~G.~Kac, M.~Wakimoto
\paper Representations of superconformal algebras and mock theta functions
\serial Tr. Mosk. Mat. Obs.
\yr 2017
\vol 78
\issue 1
\pages 17--88
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo593}
\elib{https://elibrary.ru/item.asp?id=37045053}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2017
\vol 78
\pages 9--74
\crossref{https://doi.org/10.1090/mosc/268}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037665584}
Linking options:
  • https://www.mathnet.ru/eng/mmo593
  • https://www.mathnet.ru/eng/mmo/v78/i1/p17
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024