Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2013, Volume 74, Issue 2, Pages 279–296 (Mi mmo549)  

This article is cited in 4 scientific papers (total in 4 papers)

On macroscopic dimension of universal coverings of closed manifolds

A. Dranishnikovab

a Department of Mathematics, University of Florida, USA
b Steklov Mathematical Institute, Moscow, Russia
Full-text PDF (305 kB) Citations (4)
References:
Abstract: We give a homological characterization of $n$-manifolds whose universal covering $\widetilde{M}$ has Gromov’s macroscopic dimension $\mathrm{dim}_{mc}\widetilde{M}<n$. As the result we distinguish $\mathrm{dim}_{mc}$ from the macroscopic dimension $\mathrm{dim}_{MC}$ defined by the author [7]. We prove the inequality $\mathrm{dim}_{mc}\widetilde{M}<\mathrm{dim}_{MC}\widetilde{M}=n$ for every closed $n$-manifold $M$ whose fundamental group $\pi$ is a geometrically finite amenable duality group with the cohomological dimension $cd(\pi)>n$. References: 14 entries.
Key words and phrases: macroscopic dimension, duality group, amenable group.
Received: 13.05.2013
English version:
Transactions of the Moscow Mathematical Society, 2013, Volume 74, Pages 229–244
DOI: https://doi.org/10.1090/S0077-1554-2014-00221-1
Bibliographic databases:
Document Type: Article
UDC: 514.7
MSC: Primary 55M30; Secondary 53C23, 57N65
Language: English
Citation: A. Dranishnikov, “On macroscopic dimension of universal coverings of closed manifolds”, Tr. Mosk. Mat. Obs., 74, no. 2, MCCME, M., 2013, 279–296; Trans. Moscow Math. Soc., 74 (2013), 229–244
Citation in format AMSBIB
\Bibitem{Dra13}
\by A.~Dranishnikov
\paper On macroscopic dimension of universal coverings of closed manifolds
\serial Tr. Mosk. Mat. Obs.
\yr 2013
\vol 74
\issue 2
\pages 279--296
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo549}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3235798}
\zmath{https://zbmath.org/?q=an:1310.55005}
\elib{https://elibrary.ru/item.asp?id=21369372}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2013
\vol 74
\pages 229--244
\crossref{https://doi.org/10.1090/S0077-1554-2014-00221-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960095158}
Linking options:
  • https://www.mathnet.ru/eng/mmo549
  • https://www.mathnet.ru/eng/mmo/v74/i2/p279
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:284
    Full-text PDF :68
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024