Abstract:
We define and study the degeneration property for $\mathrm{BV}_\infty$ algebras and show that it implies that the underlying $L_\infty$ algebras are homotopy abelian. The proof is based on a generalisation of the well- known identity $\Delta(e^\xi)=e^\xi\left(\Delta(\xi)+\frac12[\xi,\xi]\right)$ which holds in all BV algebras. As an application we show that the higher Koszul brackets on the cohomology of a manifold supplied with a generalised Poisson structure all vanish. References: 17 entries.
Key words and phrases:$L_\infty$ algebra, BV algebra, Poisson manifold, differential operator.
This publication is cited in the following 16 articles:
Joana Cirici, Scott O. Wilson, “Homotopy BV-algebras in Hermitian geometry”, Journal of Geometry and Physics, 2024, 105275
Kai Behrend, Matt Peddie, Ping Xu, “Quantization of ($-1$)-Shifted Derived Poisson Manifolds”, Commun. Math. Phys., 402:3 (2023), 2301
Jonathan P Pridham, “Quantisation of derived Lagrangians”, Geom. Topol., 26:6 (2022), 2405
Lawrence R., Ranade N., Sullivan D., “Quantitative Towers in Finite Difference Calculus Approximating the Continuum”, Q. J. Math., 72:1-2 (2021), 515–545
Gwilliam O., Williams B.R., “Higher Kac-Moody Algebras and Symmetries of Holomorphic Field Theories”, Adv. Theor. Math. Phys., 25:1 (2021), 129–239
Voronov A.A., “Quantizing Deformation Theory II”, Pure Appl. Math. Q., 16:1, 3, SI (2020), 125–152
Ch. Braun, J. Maunder, “Minimal models of quantum homotopy Lie algebras via the BV-formalism”, J. Math. Phys., 59:6 (2018), 063512
O. Gwilliam, R. Haugseng, “Linear Batalin–Vilkovisky quantization as a functor of $\infty$-categories”, Sel. Math.-New Ser., 24:2 (2018), 1247–1313
N. Kowalzig, “When Ext is a Batalin–Vilkovisky algebra”, J. Noncommutative Geom., 12:3 (2018), 1080–1130
M. Markl, A. A. Voronov, “The MV formalism for IBL$_\infty$- and BV$_\infty$-algebras”, Lett. Math. Phys., 107:8 (2017), 1515–1543
D. Bashkirov, A. A. Voronov, “The BV formalism for $L_\infty$-algebras”, J. Homotopy Relat. Struct., 12:2 (2017), 305–327
A. J. Bruce, A. G. Tortorella, “Kirillov structures up to homotopy”, Differ. Geom. Appl., 48 (2016), 72–86
Kowalzig N., “Batalin-Vilkovisky Algebra Structures on (Co)Tor and Poisson Bialgebroids”, J. Pure Appl. Algebr., 219:9 (2015), 3781–3822
Iacono D., “Deformations and Obstructions of Pairs (X, D)”, Int. Math. Res. Notices, 2015, no. 19, 9660–9695
Kowalzig N., “Gerstenhaber and Batalin-Vilkovisky Structures on Modules Over Operads”, Int. Math. Res. Notices, 2015, no. 22, 11694–11744
Vitagliano L., “Representations of Homotopy Lie-Rinehart Algebras”, Math. Proc. Camb. Philos. Soc., 158:1 (2015), 155–191