Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2013, Volume 74, Issue 2, Pages 265–277 (Mi mmo548)  

This article is cited in 16 scientific papers (total in 16 papers)

Homotopy BV algebras in Poisson geometry

C. Brauna, A. Lazarevb

a Centre for Mathematical Sciences, City University London, London, UK
b Departament of Mathematics and Statistics, Lancaster University, Lancaster, UK
References:
Abstract: We define and study the degeneration property for $\mathrm{BV}_\infty$ algebras and show that it implies that the underlying $L_\infty$ algebras are homotopy abelian. The proof is based on a generalisation of the well- known identity $\Delta(e^\xi)=e^\xi\left(\Delta(\xi)+\frac12[\xi,\xi]\right)$ which holds in all BV algebras. As an application we show that the higher Koszul brackets on the cohomology of a manifold supplied with a generalised Poisson structure all vanish. References: 17 entries.
Key words and phrases: $L_\infty$ algebra, BV algebra, Poisson manifold, differential operator.
Received: 15.05.2013
English version:
Transactions of the Moscow Mathematical Society, 2013, Volume 74, Pages 217–227
DOI: https://doi.org/10.1090/s0077-1554-2014-00216-8
Bibliographic databases:
Document Type: Article
UDC: 512.66
MSC: 14D15, 16E45, 53D17
Language: English
Citation: C. Braun, A. Lazarev, “Homotopy BV algebras in Poisson geometry”, Tr. Mosk. Mat. Obs., 74, no. 2, MCCME, M., 2013, 265–277; Trans. Moscow Math. Soc., 74 (2013), 217–227
Citation in format AMSBIB
\Bibitem{BraLaz13}
\by C.~Braun, A.~Lazarev
\paper Homotopy BV algebras in Poisson geometry
\serial Tr. Mosk. Mat. Obs.
\yr 2013
\vol 74
\issue 2
\pages 265--277
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo548}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3235797}
\zmath{https://zbmath.org/?q=an:1306.53068}
\elib{https://elibrary.ru/item.asp?id=21369371}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2013
\vol 74
\pages 217--227
\crossref{https://doi.org/10.1090/s0077-1554-2014-00216-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921377008}
Linking options:
  • https://www.mathnet.ru/eng/mmo548
  • https://www.mathnet.ru/eng/mmo/v74/i2/p265
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :84
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024