Loading [MathJax]/jax/output/SVG/config.js
Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2013, Volume 74, Issue 2, Pages 265–277 (Mi mmo548)  

This article is cited in 16 scientific papers (total in 16 papers)

Homotopy BV algebras in Poisson geometry

C. Brauna, A. Lazarevb

a Centre for Mathematical Sciences, City University London, London, UK
b Departament of Mathematics and Statistics, Lancaster University, Lancaster, UK
References:
Abstract: We define and study the degeneration property for $\mathrm{BV}_\infty$ algebras and show that it implies that the underlying $L_\infty$ algebras are homotopy abelian. The proof is based on a generalisation of the well- known identity $\Delta(e^\xi)=e^\xi\left(\Delta(\xi)+\frac12[\xi,\xi]\right)$ which holds in all BV algebras. As an application we show that the higher Koszul brackets on the cohomology of a manifold supplied with a generalised Poisson structure all vanish. References: 17 entries.
Key words and phrases: $L_\infty$ algebra, BV algebra, Poisson manifold, differential operator.
Received: 15.05.2013
English version:
Transactions of the Moscow Mathematical Society, 2013, Volume 74, Pages 217–227
DOI: https://doi.org/10.1090/s0077-1554-2014-00216-8
Bibliographic databases:
Document Type: Article
UDC: 512.66
MSC: 14D15, 16E45, 53D17
Language: English
Citation: C. Braun, A. Lazarev, “Homotopy BV algebras in Poisson geometry”, Tr. Mosk. Mat. Obs., 74, no. 2, MCCME, M., 2013, 265–277; Trans. Moscow Math. Soc., 74 (2013), 217–227
Citation in format AMSBIB
\Bibitem{BraLaz13}
\by C.~Braun, A.~Lazarev
\paper Homotopy BV algebras in Poisson geometry
\serial Tr. Mosk. Mat. Obs.
\yr 2013
\vol 74
\issue 2
\pages 265--277
\publ MCCME
\publaddr M.
\mathnet{http://mi.mathnet.ru/mmo548}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3235797}
\zmath{https://zbmath.org/?q=an:1306.53068}
\elib{https://elibrary.ru/item.asp?id=21369371}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2013
\vol 74
\pages 217--227
\crossref{https://doi.org/10.1090/s0077-1554-2014-00216-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921377008}
Linking options:
  • https://www.mathnet.ru/eng/mmo548
  • https://www.mathnet.ru/eng/mmo/v74/i2/p265
  • This publication is cited in the following 16 articles:
    1. Joana Cirici, Scott O. Wilson, “Homotopy BV-algebras in Hermitian geometry”, Journal of Geometry and Physics, 2024, 105275  crossref
    2. Kai Behrend, Matt Peddie, Ping Xu, “Quantization of ($-1$)-Shifted Derived Poisson Manifolds”, Commun. Math. Phys., 402:3 (2023), 2301  crossref
    3. Jonathan P Pridham, “Quantisation of derived Lagrangians”, Geom. Topol., 26:6 (2022), 2405  crossref
    4. Lawrence R., Ranade N., Sullivan D., “Quantitative Towers in Finite Difference Calculus Approximating the Continuum”, Q. J. Math., 72:1-2 (2021), 515–545  crossref  mathscinet  isi  scopus
    5. Gwilliam O., Williams B.R., “Higher Kac-Moody Algebras and Symmetries of Holomorphic Field Theories”, Adv. Theor. Math. Phys., 25:1 (2021), 129–239  crossref  mathscinet  isi
    6. Voronov A.A., “Quantizing Deformation Theory II”, Pure Appl. Math. Q., 16:1, 3, SI (2020), 125–152  crossref  mathscinet  zmath  isi
    7. Ch. Braun, J. Maunder, “Minimal models of quantum homotopy Lie algebras via the BV-formalism”, J. Math. Phys., 59:6 (2018), 063512  crossref  mathscinet  zmath  isi  scopus
    8. O. Gwilliam, R. Haugseng, “Linear Batalin–Vilkovisky quantization as a functor of $\infty$-categories”, Sel. Math.-New Ser., 24:2 (2018), 1247–1313  crossref  mathscinet  zmath  isi  scopus
    9. N. Kowalzig, “When Ext is a Batalin–Vilkovisky algebra”, J. Noncommutative Geom., 12:3 (2018), 1080–1130  crossref  mathscinet  isi  scopus
    10. M. Markl, A. A. Voronov, “The MV formalism for IBL$_\infty$- and BV$_\infty$-algebras”, Lett. Math. Phys., 107:8 (2017), 1515–1543  crossref  mathscinet  zmath  isi  scopus
    11. D. Bashkirov, A. A. Voronov, “The BV formalism for $L_\infty$-algebras”, J. Homotopy Relat. Struct., 12:2 (2017), 305–327  crossref  mathscinet  zmath  isi  scopus
    12. A. J. Bruce, A. G. Tortorella, “Kirillov structures up to homotopy”, Differ. Geom. Appl., 48 (2016), 72–86  crossref  mathscinet  zmath  isi  scopus
    13. Kowalzig N., “Batalin-Vilkovisky Algebra Structures on (Co)Tor and Poisson Bialgebroids”, J. Pure Appl. Algebr., 219:9 (2015), 3781–3822  crossref  mathscinet  zmath  isi  elib  scopus
    14. Iacono D., “Deformations and Obstructions of Pairs (X, D)”, Int. Math. Res. Notices, 2015, no. 19, 9660–9695  crossref  mathscinet  zmath  isi  scopus
    15. Kowalzig N., “Gerstenhaber and Batalin-Vilkovisky Structures on Modules Over Operads”, Int. Math. Res. Notices, 2015, no. 22, 11694–11744  crossref  mathscinet  zmath  isi  scopus
    16. Vitagliano L., “Representations of Homotopy Lie-Rinehart Algebras”, Math. Proc. Camb. Philos. Soc., 158:1 (2015), 155–191  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :98
    References:74
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025