Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2011, Volume 72, Issue 2, Pages 223–247 (Mi mmo17)  

Quantitative jump theorem

P. I. Kaleda

OJSC NIKIET, Moscow
References:
Abstract: The jump theorem proved by Mishchenko and Pontryagin more than fifty years ago is one of the fundamental results in the theory of relaxation oscillations. Its statement is asymptotic in character. In this paper we present a quantitative analogue of it. This means the following. The jump theorem describes the map along trajectories (the Poincaré map) from a transversal ‘before the jump’ to a transversal ‘after the jump’. This map is exponentially contracting, and its deviation from the jump point with respect to the slow coordinate is of order $\varepsilon^{2/3}$, where $\varepsilon$ is the small parameter in the fast-slow system. These estimates are asymptotic. Normalizing the system by choosing the scale, we prove that for all $\varepsilon$ no greater than $e^{-12}$, the Poincaré map is defined, its deviation lies in the interval $\varepsilon^{2/3}[e^{-6},e^3]$, and the map itself is a contraction with a coefficient that does not exceed $e^{-k(\varepsilon)}$, where $k(\varepsilon)\ge1/(6\varepsilon)-10^3$. The main tool used in the investigation is the method of blowup with different weights, in the form described by Krupa and Szmolyan.
Key words and phrases: relaxation oscillations, fast-slow system, jump point, resolution of singularities, normal form.
Received: 13.12.2010
Revised: 21.03.2011
English version:
Transactions of the Moscow Mathematical Society, 2011, Volume 72, Pages 171–191
DOI: https://doi.org/10.1090/S0077-1554-2012-00187-3
Bibliographic databases:
Document Type: Article
UDC: 517.925.41
MSC: 37G10
Language: Russian
Citation: P. I. Kaleda, “Quantitative jump theorem”, Tr. Mosk. Mat. Obs., 72, no. 2, MCCME, Moscow, 2011, 223–247; Trans. Moscow Math. Soc., 72 (2011), 171–191
Citation in format AMSBIB
\Bibitem{Kal11}
\by P.~I.~Kaleda
\paper Quantitative jump theorem
\serial Tr. Mosk. Mat. Obs.
\yr 2011
\vol 72
\issue 2
\pages 223--247
\publ MCCME
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/mmo17}
\zmath{https://zbmath.org/?q=an:06026277}
\elib{https://elibrary.ru/item.asp?id=21369342}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2011
\vol 72
\pages 171--191
\crossref{https://doi.org/10.1090/S0077-1554-2012-00187-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960107596}
Linking options:
  • https://www.mathnet.ru/eng/mmo17
  • https://www.mathnet.ru/eng/mmo/v72/i2/p223
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:173
    Full-text PDF :59
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024