Trudy Moskovskogo Matematicheskogo Obshchestva
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Mosk. Mat. Obs.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Moskovskogo Matematicheskogo Obshchestva, 2011, Volume 72, Issue 2, Pages 207–222 (Mi mmo16)  

This article is cited in 7 scientific papers (total in 7 papers)

Parity, free knots, groups, and invariants of finite type

V. O. Manturov

Peoples Friendship University of Russia, Faculty of Physical, Mathematical and Natural Sciences
Full-text PDF (243 kB) Citations (7)
References:
Abstract: In this paper, on the basis of the notion of parity introduced recently by the author, for each positive integer $m$ we construct invariants of long virtual knots with values in some simply defined group $\mathcal G_m$; conjugacy classes of this group play a role as invariants of compact virtual knots. By construction, each of the invariants is unaltered by the move of virtualization. Factorization of the group algebra of the corresponding group leads to invariants of finite order of (long) virtual knots that do not change under virtualization.
The central notion used in the construction of the invariants is parity: the crossings of diagrams of free knots is endowed with an additional structure — each crossing is declared to be even or odd, where even crossings behave regularly under Reidemeister moves.
Key words and phrases: knot, virtual knot, free knot, invariant, parity, group, invariant of finite order.
Received: 05.08.2010
Revised: 08.03.2011
English version:
Transactions of the Moscow Mathematical Society, 2011, Volume 72, Pages 157–169
DOI: https://doi.org/10.1090/S0077-1554-2012-00188-5
Bibliographic databases:
Document Type: Article
UDC: 515
MSC: 57M25, 57M27
Language: Russian
Citation: V. O. Manturov, “Parity, free knots, groups, and invariants of finite type”, Tr. Mosk. Mat. Obs., 72, no. 2, MCCME, Moscow, 2011, 207–222; Trans. Moscow Math. Soc., 72 (2011), 157–169
Citation in format AMSBIB
\Bibitem{Man11}
\by V.~O.~Manturov
\paper Parity, free knots, groups, and invariants of finite type
\serial Tr. Mosk. Mat. Obs.
\yr 2011
\vol 72
\issue 2
\pages 207--222
\publ MCCME
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/mmo16}
\zmath{https://zbmath.org/?q=an:06026274}
\elib{https://elibrary.ru/item.asp?id=21369341}
\transl
\jour Trans. Moscow Math. Soc.
\yr 2011
\vol 72
\pages 157--169
\crossref{https://doi.org/10.1090/S0077-1554-2012-00188-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960118229}
Linking options:
  • https://www.mathnet.ru/eng/mmo16
  • https://www.mathnet.ru/eng/mmo/v72/i2/p207
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Trudy Moskovskogo Matematicheskogo Obshchestva
    Statistics & downloads:
    Abstract page:400
    Full-text PDF :136
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024