Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2019, Volume 19, Number 3, Pages 523–548
DOI: https://doi.org/10.17323/1609-4514-2019-19-3-523-548
(Mi mmj745)
 

This article is cited in 1 scientific paper (total in 1 paper)

Classification of Leavitt path algebras with two vertices

Müge Kanunia, Dolores Martín Barquerob, Cándido Martín Gonzálezc, Mercedes Siles Molinac

a Department of Mathematics, Düzce University, Konuralp 81620 Düzce, Turkey
b Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales, Universidad de Málaga, 29071 Málaga, Spain
c Departamento de Álgebra Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n. 29071 Málaga, Spain
Full-text PDF Citations (1)
References:
Abstract: We classify row-finite Leavitt path algebras associated to graphs with no more than two vertices. For the discussion we use the following invariants: decomposability, the $K_0$ group, $\det(N'_E)$ (included in the Franks invariants), the type, as well as the socle, the ideal generated by the vertices in cycles with no exits and the ideal generated by vertices in extreme cycles. The starting point is a simple linear algebraic result that determines when a Leavitt path algebra is IBN. An interesting result that we have found is that the ideal generated by extreme cycles is invariant under any isomorphism (for Leavitt path algebras whose associated graph is finite). We also give a more specific proof of the fact that the shift move produces an isomorphism when applied to any row-finite graph, independently of the field we are considering.
Key words and phrases: Leavitt path algebra, IBN property, type, socle, extreme cycle, $K_0$.
Funding agency Grant number
Duzce University DUBAP-2016.05.04.462
Federación Española de Enfermedades Raras FQM-336
FQM-7156
MTM2016-76327-C3-1-P
The first named author is supported by Duzce University Bilimsel Arastirma Projesi titled "Leavitt, Cohn-Leavitt yol cebirlerinin ve C*-cizge cebirlerinin K-teorisi" with grant no: DUBAP-2016.05.04.462. The three remaining authors are supported by the Junta de Andalucia and Fondos FEDER, jointly, through projects FQM-336 and FQM-7156. They are also supported by the Spanish Ministerio de Economia y Competitividad and Fondos FEDER, jointly, through project MTM2016-76327-C3-1-P.
Bibliographic databases:
Document Type: Article
MSC: Primary 16D70; Secondary 16D25, 16E20, 16D30
Language: English
Citation: Müge Kanuni, Dolores Martín Barquero, Cándido Martín González, Mercedes Siles Molina, “Classification of Leavitt path algebras with two vertices”, Mosc. Math. J., 19:3 (2019), 523–548
Citation in format AMSBIB
\Bibitem{KanBarGon19}
\by M\"uge~Kanuni, Dolores~Mart{\'\i}n~Barquero, C\'andido~Mart{\'\i}n~Gonz\'alez, Mercedes~Siles~Molina
\paper Classification of Leavitt path algebras with two vertices
\jour Mosc. Math.~J.
\yr 2019
\vol 19
\issue 3
\pages 523--548
\mathnet{http://mi.mathnet.ru/mmj745}
\crossref{https://doi.org/10.17323/1609-4514-2019-19-3-523-548}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000476630800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85069839887}
Linking options:
  • https://www.mathnet.ru/eng/mmj745
  • https://www.mathnet.ru/eng/mmj/v19/i3/p523
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:91
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024