Loading [MathJax]/jax/output/CommonHTML/jax.js
Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2019, Volume 19, Number 3, Pages 485–521
DOI: https://doi.org/10.17323/1609-4514-2019-19-3-485-521
(Mi mmj744)
 

This article is cited in 22 scientific papers (total in 22 papers)

Complete classification of algebras of level two

Ivan Kaygorodova, Yuru Volkovb

a Universidade Federal do ABC, CMCC, Av. dos Estados, 5001 – Bangú, Santo André – SP, 09210-580, Brazil
b Sankt Peterburg state university, Vassilyevskiy ostrov, 14 liniya, 29V, Sankt-Peterburg 199178, Russia
Full-text PDF Citations (22)
References:
Abstract: The main result of the paper is the classification of all (nonassociative) algebras of level two, i.e., such algebras that maximal chains of nontrivial degenerations starting at them have length two. During this classification we obtain an estimation of the level of an algebra via its generation type, i.e., the maximal dimension of its one generated subalgebra. Also we describe all degenerations and levels of algebras of the generation type 1 with a square zero ideal of codimension 1.
Key words and phrases: Level of algebra, orbit closure, degeneration.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-04004
Ministry of Education and Science of the Russian Federation MK-2262.2019.1
The work was supported by RFBR 17-51-04004 the Presidents Programme Support of Young Russian Scientists (MK-2262.2019.1).
Bibliographic databases:
Document Type: Article
MSC: 14D06, 14L30.
Language: English
Citation: Ivan Kaygorodov, Yuru Volkov, “Complete classification of algebras of level two”, Mosc. Math. J., 19:3 (2019), 485–521
Citation in format AMSBIB
\Bibitem{KayVol19}
\by Ivan~Kaygorodov, Yuru~Volkov
\paper Complete classification of algebras of level two
\jour Mosc. Math.~J.
\yr 2019
\vol 19
\issue 3
\pages 485--521
\mathnet{http://mi.mathnet.ru/mmj744}
\crossref{https://doi.org/10.17323/1609-4514-2019-19-3-485-521}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000476630800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068622654}
Linking options:
  • https://www.mathnet.ru/eng/mmj744
  • https://www.mathnet.ru/eng/mmj/v19/i3/p485
  • This publication is cited in the following 22 articles:
    1. Sin-Ei Takahasi, Kiyoshi Shirayanagi, Makoto Tsukada, “A classification of endo-commutative curled algebras of dimension 2 over a nontrivial field”, Asian-European J. Math., 16:10 (2023)  crossref
    2. Yury Volkov, “Anticommutative algebras of the third level”, Linear Algebra and its Applications, 662 (2023), 18  crossref
    3. Hani Abdelwahab, Elisabete Barreiro, Antonio J. Calderón, Amir Fernández Ouaridi, “The algebraic and geometric classification of nilpotent Lie triple systems up to dimension four”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117:1 (2023)  crossref
    4. Ivan Kaygorodov, Mykola Khrypchenko, Samuel A. Lopes, “The geometric classification of nilpotent algebras”, Journal of Algebra, 633 (2023), 857  crossref
    5. Sin-Ei Takahasi, Kiyoshi Shirayanagi, Makoto Tsukada, “A Classification of 2-Dimensional Endo-Commutative Straight Algebras of Rank 1 over a non-Trivial Field”, MathPann, 29_NS3:2 (2023), 258  crossref
    6. Ouaridi A.F., Kaygorodov I., Khrypchenko M., Volkov Yu., “Degenerations of Nilpotent Algebras”, J. Pure Appl. Algebr., 226:3 (2022), 106850  crossref  mathscinet  isi  scopus
    7. Ismailov N., Kaygorodov I., Mustafa M., “The Algebraic and Geometric Classification of Nilpotent Right Alternative Algebras”, Period. Math. Hung., 84:1 (2022), 18–30  crossref  mathscinet  isi  scopus
    8. Yury Volkov, “Anticommutative Engel algebras of the first five levels”, Linear and Multilinear Algebra, 70:1 (2022), 148  crossref
    9. Yury Volkov, “n-ary Algebras of the First Level”, Mediterr. J. Math., 19:1 (2022)  crossref
    10. D. Jumaniyozov, I. Kaygorodov, A. Khudoyberdiyev, “The algebraic and geometric classification of nilpotent noncommutative Jordan algebras”, J. Algebra. Appl., 20:11 (2021), 2150202  crossref  mathscinet  isi  scopus
    11. I. Kaygorodov, M. Khrypchenko, “The geometric classification of nilpotent $\mathfrak{CD}$-algebras”, J. Algebra. Appl., 20:11 (2021), 2150198  crossref  mathscinet  isi  scopus
    12. Ignatyev M., Kaygorodov I., Popov Yu., “The Geometric Classification of 2-Step Nilpotent Algebras and Applications”, Rev. Mat. Complut., 2021  crossref  isi  scopus
    13. I. Gorshkov, I. Kaygorodov, Yu. Popov, “Degenerations of Jordan algebras and “marginal” algebras”, Algebr. Colloq., 28:02 (2021), 281–294  crossref  mathscinet  isi  scopus
    14. I. Kaygorodov, M. Khrypchenko, Yu. Popov, “The algebraic and geometric classification of nilpotent terminal algebras”, J. Pure Appl. Algebr., 225:6 (2021), 106625  crossref  mathscinet  isi  scopus
    15. Nurlan Ismailov, Ivan Kaygorodov, Farukh Mashurov, “The Algebraic and Geometric Classification of Nilpotent Assosymmetric Algebras”, Algebr Represent Theor, 24:1 (2021), 135  crossref
    16. I. Kaygorodov, S. A. Lopes, Yu. Popov, “Degenerations of nilpotent associative commutative algebras”, Commun. Algebr., 48:4 (2020), 1632–1639  crossref  mathscinet  zmath  isi  scopus
    17. I. Gorshkov, I. Kaygorodov, M. Khrypchenko, “The geometric classification of nilpotent tortkara algebras”, Commun. Algebr., 48:1 (2020), 204–209  crossref  mathscinet  zmath  isi  scopus
    18. Ivan Kaygorodov, Abror Khudoyberdiyev, Aloberdi Sattarov, “One-generated nilpotent terminal algebras”, Communications in Algebra, 48:10 (2020), 4355  crossref
    19. Ivan Kaygorodov, Yury Volkov, “Degenerations of Filippov algebras”, Journal of Mathematical Physics, 61:2 (2020)  crossref
    20. Luisa M. Camacho, Ivan Kaygorodov, Viktor Lopatkin, Mohamed A. Salim, “The variety of dual mock-Lie algebras”, Communications in Mathematics, 28:2 (2020), 161  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:168
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025