Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2017, Volume 17, Number 4, Pages 757–786
DOI: https://doi.org/10.17323/1609-4514-2017-17-4-757-786
(Mi mmj657)
 

This article is cited in 20 scientific papers (total in 20 papers)

Persistence modules with operators in Morse and Floer theory

Leonid Polterovicha, Egor Shelukhinbc, Vukašin Stojisavljevića

a School of Mathematical Sciences, Tel Aviv University
b IAS, Princeton
c DMS at U. of Montreal
Full-text PDF Citations (20)
References:
Abstract: We introduce a new notion of persistence modules endowed with operators. It encapsulates the additional structure on Floer-type persistence modules coming from the intersection product with classes in the ambient (quantum) homology, along with a few other geometric situations. We provide sample applications to the $C^0$-geometry of Morse functions and to Hofer's geometry of Hamiltonian diffeomorphisms that go beyond spectral invariants and traditional persistent homology.
Key words and phrases: symplectic manifold, Hamiltonian diffeomorphism, Floer homology, persistence module, barcode.
Bibliographic databases:
Document Type: Article
MSC: Primary 53D40; Secondary 58E05
Language: English
Citation: Leonid Polterovich, Egor Shelukhin, Vukašin Stojisavljević, “Persistence modules with operators in Morse and Floer theory”, Mosc. Math. J., 17:4 (2017), 757–786
Citation in format AMSBIB
\Bibitem{PolSheSto17}
\by Leonid~Polterovich, Egor~Shelukhin, Vuka{\v s}in~Stojisavljevi\'c
\paper Persistence modules with operators in Morse and Floer theory
\jour Mosc. Math.~J.
\yr 2017
\vol 17
\issue 4
\pages 757--786
\mathnet{http://mi.mathnet.ru/mmj657}
\crossref{https://doi.org/10.17323/1609-4514-2017-17-4-757-786}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416897600010}
Linking options:
  • https://www.mathnet.ru/eng/mmj657
  • https://www.mathnet.ru/eng/mmj/v17/i4/p757
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:243
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024