Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2017, Volume 17, Number 4, Pages 741–755
DOI: https://doi.org/10.17323/1609-4514-2017-17-4-741-755
(Mi mmj656)
 

This article is cited in 7 scientific papers (total in 7 papers)

Delta-matroids and Vassiliev invariants

Sergey Landoab, Vyacheslav Zhukova

a National Research University Higher School of Economics
b Skolkovo Institute of Science and Technology
Full-text PDF Citations (7)
References:
Abstract: Vassiliev (finite type) invariants of knots can be described in terms of weight systems. These are functions on chord diagrams satisfying so-called $4$-term relations. The goal of the present paper is to show that one can define both the first and the second Vassiliev moves for binary delta-matroids and introduce a $4$-term relation for them in such a way that the mapping taking a chord diagram to its delta-matroid respects the corresponding $4$-term relations.
Understanding how the $4$-term relation can be written out for arbitrary binary delta-matroids motivates introduction of the graded Hopf algebra of binary delta-matroids modulo the $4$-term relations so that the mapping taking a chord diagram to its delta-matroid extends to a morphism of Hopf algebras. One can hope that studying this Hopf algebra will allow one to clarify the structure of the Hopf algebra of weight systems, in particular, to find reasonable new estimates for the dimensions of the spaces of weight systems of given degree.
Key words and phrases: delta-matroid, binary delta-matroid, finite order knot invariants, chord diagram, weight system, $4$-term relations.
Bibliographic databases:
Document Type: Article
MSC: 05C31, 57M27
Language: English
Citation: Sergey Lando, Vyacheslav Zhukov, “Delta-matroids and Vassiliev invariants”, Mosc. Math. J., 17:4 (2017), 741–755
Citation in format AMSBIB
\Bibitem{LanZhu17}
\by Sergey~Lando, Vyacheslav~Zhukov
\paper Delta-matroids and Vassiliev invariants
\jour Mosc. Math.~J.
\yr 2017
\vol 17
\issue 4
\pages 741--755
\mathnet{http://mi.mathnet.ru/mmj656}
\crossref{https://doi.org/10.17323/1609-4514-2017-17-4-741-755}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416897600009}
Linking options:
  • https://www.mathnet.ru/eng/mmj656
  • https://www.mathnet.ru/eng/mmj/v17/i4/p741
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:233
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024