Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 2022, Volume 34, Number 11, Pages 35–47
DOI: https://doi.org/10.20948/mm-2022-11-03
(Mi mm4417)
 

Calculation of kinetic and diffusion coefficients of the process of surfactant adsorption in oil-bearing porous rocks

G. S. Aliyev, Kh. M. Rustamli, Kh. Sh. Hajiahmedzade

Institute of Catalysis and Inorganic Chemistry named after academician M. Nagiyev of National Academy of Sciences of Azerbaijan
References:
Abstract: This article presents the results of studies of the kinetic and diffusion coefficients for the adsorption of surfactants on oil-bearing rocks in the nonlinear region of the isotherm. These parameters allow you to select an effective solution filtration mode, set the velocity of concentration points of the adsorption front, control the longitudinal-temporal distribution of surfactant concentrations on the solid and mobile phases of the reservoir depending on the initial concentration and the flow rate of the solution. The paper presents a numerical method for determining the parameters of the equations of a mathematical model of the adsorption of surfactants — sulfanol from an aqueous solution in oil sand using experimental data. It takes into account that the kinetics coefficient and the effective diffusion coefficient in a porous medium depend on the concentration of the target component. Using experimental data and the developed methodology, empirical equations for the kinetics coefficient and the effective diffusion coefficient of the process are determined. It is determined that these coefficients vary within very large limits. As a result of the research, we came to the conclusion that the developed numerical methods for determining the parameters of the equations of mathematical models of the adsorption of surfactants on oil and quartz sands provide the adequacy of the calculated data of the adsorbate and the adsorptive experiment. The maximum average deviation does not exceed 8%.
Keywords: adsorption, porous media, surfactants, soap naphtha, mathematical model, kinetic coefficient, effective diffusion coefficient.
Funding agency Grant number
Fund of the State Oil Company of Azerbaijan Republic (SOCAR) 13LR-AMEA (01.05.2022)
Received: 21.04.2022
Revised: 25.07.2022
Accepted: 12.09.2022
English version:
Mathematical Models and Computer Simulations, 2023, Volume 15, Issue 3, Pages 476–484
DOI: https://doi.org/10.1134/S207004822303002X
Document Type: Article
Language: Russian
Citation: G. S. Aliyev, Kh. M. Rustamli, Kh. Sh. Hajiahmedzade, “Calculation of kinetic and diffusion coefficients of the process of surfactant adsorption in oil-bearing porous rocks”, Matem. Mod., 34:11 (2022), 35–47; Math. Models Comput. Simul., 15:3 (2023), 476–484
Citation in format AMSBIB
\Bibitem{AliRusHaj22}
\by G.~S.~Aliyev, Kh.~M.~Rustamli, Kh.~Sh.~Hajiahmedzade
\paper Calculation of kinetic and diffusion coefficients of the process of surfactant adsorption in oil-bearing porous rocks
\jour Matem. Mod.
\yr 2022
\vol 34
\issue 11
\pages 35--47
\mathnet{http://mi.mathnet.ru/mm4417}
\crossref{https://doi.org/10.20948/mm-2022-11-03}
\transl
\jour Math. Models Comput. Simul.
\yr 2023
\vol 15
\issue 3
\pages 476--484
\crossref{https://doi.org/10.1134/S207004822303002X}
Linking options:
  • https://www.mathnet.ru/eng/mm4417
  • https://www.mathnet.ru/eng/mm/v34/i11/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :45
    References:56
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024